Núcleo de Economia Regional e Urbana da Universidade de São Paulo

CGE Models

Eduardo Haddad

Outline

\checkmark What is the CEER Model?

Overview

Building blocks

CEER, a bottom-up spatial CGE model of Colombia

A multi-sectoral, multi-regional bottom-up CGE model of Colombia's 32 Departments and the capital city, Bogotá

- each region is modeled as an economy in its own right
- region-specific prices
- region-specific industries
- region-specific consumers

Based on the comparative-static B-MARIA and MMRF models

Database makes allowance for interregional, intra-regional and international trade

- explicit representations of regional and federal government financial accounts

Stylized flows

Embedded SAM

The Role of Transportation Services in CEER

Core database

		ABSORPTION MATRIX					
		1	2	3	4	5	6
		Producers	Investors	Household	Export	Regional Govt.	Federal Govt.
	Size	J x Q	J x Q	Q	1	Q	Q
Basic Flows	Ix S	BAS1	BAS2	BAS3	BAS4	BAS5	BAS6
Margins	Ix SxR	MAR1	MAR2	MAR3	MAR4	MAR5	MAR6
Taxes	Ix S	TAX1	TAX2	TAX3	TAX4	TAX5	TAX6
Labor	1	LABR	```I = number of commodities \(\mathrm{J}=\) number of industries \(\mathrm{R}=\) number of commodities used as margins \(\mathrm{Q}=\) number of regions \(\mathrm{S}=\mathrm{Q}\) domestic regions +1 foreign import```				
Capital	1	CPTL					
Other	1	OCTS					

Features of database

Commodity flows are valued at "basic prices" (BAS):

- do not include user-specific taxes or margins

For each user of each imported good and each domestic good, there are numbers showing:

- tax levied on that usage (TAX)
- usage of margins - transport (MAR)

Single-production:
" each commodity may be produced by one industry

- each industry may produce one commodity

For each industry the total cost of production is equal to the total value of output

For each commodity the total value of sales is equal to the total value of output

Features of database (cont.)

Domestic producers

- J industries in Q regions

Investors

- J industries in Q regions

Households
" one representative household for each of the Q regions

Each of the I commodity types can be obtained from the region, from other regions, or imported from overseas

Features of database (cont.)

Aggregate foreign purchaser of exports

Other demand category corresponding to the Q regional governments

Other demand category corresponding to the Central government in the Q regions

Commodity taxes and Margins explicitly recognised

Notation

Main User Numbers

$1 \Leftrightarrow$ firms, current production,
$2 \Leftrightarrow$ firms, capital creation;
$3 \Leftrightarrow$ households
$4 \Leftrightarrow$ foreign exports,
$5 \Leftrightarrow$ regional government,
$6 \Leftrightarrow$ Central government
The number 0 is also used to denote basic prices and values.

Source dimensions

$a \Leftrightarrow$ all sources, i.e., 33 regional sources and 1 foreign;
$r \Leftrightarrow$ regional sources only;
$\mathrm{t} \Leftrightarrow$ two sources, i.e., a domestic composite source and foreign;
c \Leftrightarrow domestic composite source only,
$o \Leftrightarrow$ domestic- foreign composite source only.

Outline

What is the CEER Model?

\checkmark Overview

Building blocks

Building blocks

\checkmark Producer's demands for inputs
\checkmark Investor demands
\checkmark Household demands
\checkmark Export demands
\checkmark Government demands
\checkmark Margins demands
\checkmark Zero pure profits
\checkmark Indirect tax equations
\checkmark Market-clearing
\checkmark Regional and national macroeconomic variables and price indexes
\checkmark Government finances
\checkmark Capital accumulation and investment
\checkmark Regional population and labor market

Production nest

(1)

Demand for intermediate inputs, other costs and prices

```
E_xla # Demand for goods by all sources, User 1 #
(all,i,COM)(all,s,ALLSOURCE) (all,j,IND) (all,q,REGDEST)
x1a(i,s,j,q)=IS_DOM(s)*(x1c(i,j,q)-
SIGMA1C(i)*(pla(i,s,j,q)-p1c(i,j,q)))
+IS_IMP(s)*(x1o(i,j,q)-SIGMA1O(i)*(p1a(i,"foreign",j,q)-
p1o(i,j,q)));
E_plo # Price of domestic/foreign composite, User 1 #
(all,i,COM) (all,j,IND) (all,q,REGDEST)
(TINY+PVAL1O(i,j,q))*p1o(i,j,q) =
sum(s,ALLSOURCE,PVAL1A(i,s,j,q)*p1a(i,s,j,q));
E_p1c # Price of domestic composite, User 1 #
(all,i,COM)(all,j,IND) (all,q,REGDEST)
(TINY+PVAL1T(i,"domestic",j,q))*p1c(i,j,q)
=sum(s,REGSOURCE,PVAL1A(i,s,j,q)*pla(i,s,j,q));
```


Demand for intermediate inputs, other costs and prices

```
E_xlc # Demand for domestic composite, User 1 #
(all,i,COM) (all,j,IND) (all,q,REGDEST)
x1c(i,j,q)=x10(i,j,q)-SIGMA1O(i)*(p1c(i,j,q)-p1o(i,j,q));
E_xlo # Demand for dom./for. composite inputs, User 1 #
    (all,i,COM) (all,j,IND) (all,q,REGDEST)
x10(i,j,q)=z(j,q)+al(j,q);
E_xloct # Industry demand for other cost tickets #
(all,j,IND)(all,q,REGDEST)
x1oct(j,q)=z(j,q)+al(j,q)+aloct(j,q);
E_ploct # Indexing of prices of other cost tickets #
(all,j,IND)(all,q,REGDEST)
p1oct(j,q)=xi3(q)+floct(j,q);
```


Demand for primary factors

```
E_efflab # Industry demand for effective labor #
(all,j,IND)(all,q,REGDEST)
efflab(j,q)=MRL(j,q)*x1prim(j,q)+a1lab(j,q)
-SIGMA1FAC(j,q)*[p1lab(j,q) +allab(j,q) -xi_fac(j,q)];
E_curcap # Industry demand for capital #
(all,j,IND)(all,q,REGDEST)
curcap(j,q)=MRK(j,q)*x1prim(j,q)+a1cap(j,q)
-SIGMA1FAC(j,q)*[p1cap(j,q)+a1cap(j,q)-
xi_fac(j,q)]+IL2(j,q)*interest;
E_n # Industry demand for land #
(all,j,IND)(all,q,REGDEST)
n(j,q)=MRN(j,q)*x1prim(j,q) +alland(j,q)
-SIGMA1FAC(j,q)*[p1land(j,q)+a1land(j,q)-xi_fac(j,q)];
E_xi_fac # Effective price term for factor demand equations #
(all,j,IND) (all,q,REGDEST)
(TINY+TOTFACIND(j,q))*xi_fac(j,q)=LABOR(j,q)*(pllab (j,q)+allab (j,q))
+CAPITAL (j,q)*(plcap(j,q)+alcap (j,q)) +LAND(j,q)*(plland (j,q)+alland(
j,q));
```


Demand for primary factors

```
E_xllaboi # Demand for labor by industry and skill group #
(all,m,OCC) (all,j,IND) (all, q,REGDEST)
x1laboi(j,q,m)=efflab(j,q)-SIGMA1LAB(j,q)*[p1laboi(j,q,m) -
p1lab(j,q)]
+IL(m,j,q)*interest;
E_pllab # Price to each industry of labor in general #
(all,j,IND) (all, q,REGDEST)
(TINY+LABOR(j,q))*pllab (j,q)=sum(m,OCC,LAB_OCC_IND(m,j,q)*pllaboi(j,
q,m) );
E_labind # Employment by industry #
    (all,j,IND)(all,q,REGDEST)
    (TINY+LABOR(j,q))*Iabind(j,q)=sum(m,OCC,LAB_OCC_IND (m,j,q)*xIlaboi(j
,q,m));
E_xlprim # Demand for the primary-factor composite #
(all,j,IND) (all,q,REGDEST)
x1prim(j,q) =MRP(j,q)*z(j,q)+al(j,q)+alprim(j,q);
```


Building blocks

\checkmark Producer's demands for inputs
\checkmark Investor demands
\checkmark Household demands
\checkmark Export demands
\checkmark Government demands
\checkmark Margins demands
\checkmark Zero pure profits
\checkmark Indirect tax equations
\checkmark Market-clearing
\checkmark Regional and national macroeconomic variables and price indexes
\checkmark Government finances
\checkmark Capital accumulation and investment
\checkmark Regional population and labor market

Investment demand

Investment demand

```
E x2a # Demand for goods by source, User 2 #
(all,i,COM) (all,s,ALLSOURCE) (all,j,IND) (all,q,REGDEST)
x2a(i,s,j,q)=IS_DOM(s)*(x2c(i,j,q) -SIGMA2C(i)*(p2a(i,s,j,q)-
p2c(i,j,q)))
+IS_IMP(s)*(x20(i,j,q) -SIGMA2O(i)*(p2a(i,"foreign",j,q) -
p2o(i,j,q)));
E p2o # Price of domestic/foreign composite, User 2 #
(all,i,COM) (all,j,IND) (all,q,REGDEST)
(TINY+PVAL2O(i,j,q))*p2o(i,j,q)=sum(s,ALLSOURCE,PVAL2A(i,s,j,q)
*p2a(i,s,j,q));
E_p2c # Price of domestic composite, User 2 #
(all,i,COM) (all,j,IND) (all,q,REGDEST)
(TINY+PVAL2T(i,"domestic",j,q))*p2c(i,j,q)
=sum(s,REGSOURCE, PVAL2A(i,s,j,q)*p2a(i,s,j,q));
```


Investment demand

```
E_x2c # Demand for domestic composite, User 2 #
(all,i,COM) (all,j,IND) (all,q,REGDEST)
x2c(i,j,q)=x20(i,j,q)-SIGMA2O(i)*(p2c(i,j,q)-p2o(i,j,q));
E_x20 # Demands for domestic/foreign composite, User 2 #
(all,i,COM) (all,j,IND) (all,q,REGDEST)
x20(i,j,q)=y(j,q) +a2ind(j,q);
```


Building blocks

\checkmark Producer's demands for inputs
\checkmark Investor demands
\checkmark Household demands
\checkmark Export demands
\checkmark Government demands
\checkmark Margins demands
\checkmark Zero pure profits
\checkmark Indirect tax equations
\checkmark Market-clearing
\checkmark Regional and national macroeconomic variables and price indexes
\checkmark Government finances
\checkmark Capital accumulation and investment
\checkmark Regional population and labor market

Household demand

(1)
(2)
(3)

Household demand

Each regional household determines optimal consumption bundle by maximizing a Stone-Geary utility function subject to a budget constraint

A Keynesian consumption function determines aggregate regional household expenditure

Household demand

E_x3o \# Household demand for composite commodities \# (all,i, COM) (all, q, REGDEST)
$x 30(i, q)=\left[1-A L P H A _I(i, q)\right]$ * q hous $\left.(q)+a 3 s u b(i, q)\right]$
+ALPHA_I (i,q)*[luxexp(q)+a3lux(i,q)-p3o(i,q)];

E_a3lux \# Default setting for luxury taste shifter \# (all, i, COM) (all, q, REGDEST)
a3lux (i, q) =a3sub (i, q) -sum (k, COM, DELTA (k, q) *a3sub (k, q));

E_a3sub \# Default setting for subsistence taste shifter \# (all,i, COM) (all, q, REGDEST)
a3sub $(i, q)=\operatorname{abcom}(i, q)-\operatorname{sum}(k, \operatorname{COM}, \operatorname{S3COM}(k, q) * \operatorname{acom}(k, q))$;

E_utility \# Change in utility disregarding taste change terms \# (all, q, REGDEST)
utility (q) = luxexp (q) -qhous (q) -sum (i, COM, DELTA (i, q) *p3o(i, q));

Household demand

```
E_x3a # Demand for goods by source, User 3 #
(all,i,COM) (all,s,ALLSOURCE) (all,q,REGDEST)
x3a(i,s,q)=IS_DOM(s)*(x3c(i,q)-SIGMA3C(i)*(p3a(i,s,q) -p3c(i,q)))
+IS_IMP(s)*(x30(i,q) -SIGMA30(i) *(p3a(i,"foreign",q) -p3o(i,q)));
E_p3o # Price of domestic/foreign composite, User 3 #
(all,i,COM) (all,q,REGDEST)
(TINY+PVAL3O(i,q)) *p3o(i,q) =sum(s,ALLSOURCE,PVAL3A(i,s,q) *p3a(i,s,q));
E_p3c # Price of domestic composite, User 3 #
(all,i,COM) (all,q,REGDEST)
(TINY+PVAL3T(i,"domestic",q))*p3c(i,q)
=sum(s,REGSOURCE,PVAL3A(i,s,q)*p3a(i,s,q));
E_x3c # Demand for domestic composite, User 3 #
(all,i,COM) (all,q,REGDEST)
x3c(i,q)=x3o(i,q)-SIGMA30(i)*(p3c(i,q)-p3o(i,q));
```


Building blocks

\checkmark Producer's demands for inputs
\checkmark Investor demands
\checkmark Household demands
\checkmark Export demands
\checkmark Government demands
\checkmark Margins demands
\checkmark Zero pure profits
\checkmark Indirect tax equations
\checkmark Market-clearing
\checkmark Regional and national macroeconomic variables and price indexes
\checkmark Government finances
\checkmark Capital accumulation and investment
\checkmark Regional population and labor market

Foreign export demand

Foreign export demand

```
E_x4r # Export demand functions #
(all,i,TEXP)(all,s,REGSOURCE)
x4r(i,s)-feq(i)=EXP_ELAST(i)*[p4r(i,s)-fep(i)-natfep];
E_aggnt_x4r # Export demand functions, non-trad aggregate #
(all,s,REGSOURCE)
aggnt_x4r(s)-aggnt_feq(s)=EXP_ELAST("ADP") * [aggnt_p4r(s) -
aggnt_fep(s)-natfep];
E_nt_x4r # Export demand functions, non-trad #
(all,i,NTEXP)(all,s,REGSOURCE)
x4r(i,s)=aggnt_x4r(s)+faggnt_i(i)+faggnt_s(s)+faggnt_is(i,s);
E_aggnt_p4r # Export price, non-trad aggregate #
(all,s,REGSOURCE)
AGGEXPNT(s)*aggnt_p4r(s)=sum(i,NTEXP,PVAL4r(i,s)*p4r(i,s))+fagg
nt_p4r(s);
```


Building blocks

\checkmark Producer's demands for inputs
\checkmark Investor demands
\checkmark Household demands
\checkmark Export demands
\checkmark Government demands
\checkmark Margins demands
\checkmark Zero pure profits
\checkmark Indirect tax equations
\checkmark Market-clearing
\checkmark Regional and national macroeconomic variables and price indexes
\checkmark Government finances
\checkmark Capital accumulation and investment
\checkmark Regional population and labor market

Government demand

Recognise Department/Bogotá government and Central government demands for goods and services for current consumption

Neither modelled explicitly
Default:

- aggregate regional government demand in region q moves with regional private consumption, with structure of demand exogenous
- aggregate Central government demand in region q moves with national private consumption, with structure of demand exogenous

Government demand

```
E_x5a # Regional government demand #
(all,i,COM) (all,s,ALLSOURCE)(all,q,REGDEST)
x5a(i,s,q)=cr(q)+f5a(i,s,q)+f5gen(q) +natf5gen;
E_x6a # Central government demand #
(all,i,COM) (all,s,ALLSOURCE)(all,q,REGDEST)
x6a(i,s,q) =natcr+f6a(i,s,q) +f6gen(q) +natf6gen;
```


Building blocks

\checkmark Producer's demands for inputs
\checkmark Investor demands
\checkmark Household demands
\checkmark Export demands
\checkmark Government demands
\checkmark Margins demands
\checkmark Zero pure profits
\checkmark Indirect tax equations
\checkmark Market-clearing
\checkmark Regional and national macroeconomic variables and price indexes
\checkmark Government finances
\checkmark Capital accumulation and investment
\checkmark Regional population and labor market

Demand for margin (transportation) services

Margins commodities (identified in the set MARGCOM) provide freight services

- these commodities are consumed directly and used indirectly to facilitate the movements of products
- latter type of use is margins demand

Margins demand for margin commodity i is assumed to be proportional to the volume of the underlying flow

- e.g., margins use of transportation services in taking agricultural products to manufacturing is modelled as proportional to the volume of agricultural product used in manufacturing

Demand for margin (transportation) services

```
E_xlmarg # Margins on sales to producers #
(all,i,COM) (all,j,IND) (all,q,REGDEST) (all,s,ALLSOURCE) (all,r,MARGCOM)
xlmarg(i,s,j,q,r)=THETA(i,s,q)*xla(i,s,j,q)+almarg_ij (s,q,r)+amarg_i(s,
q,r);
E_x2marg # Margins on sales to capital creators #
(all,i,COM) (all,j,IND) (all,q,REGDEST) (all,s,ALLSOURCE) (all,r,MARGCOM)
x2marg(i,s,j,q,r)=THETA(i,s,q)*x2a(i,s,j,q)+a2marg_ij(s,q,r)+amarg_i(s,
q,r);
E_x3marg # Margins on sales to household consumption #
(all,i,COM) (all,s,ALLSOURCE) (all,q,REGDEST) (all,r,MARGCOM)
x3marg(i,s,q,r)=THETA(i,s,q)*x3a(i,s,q)+a3marg_i(s,q,r)+amarg_i(s,q,r);
E_x4marg # Margins on exports: factory gate to port #
(all,i,COM) (all,r,MARGCOM) (all,s,REGSOURCE)
x4marg(i,s,r)=x4r(i,s)+a4marg_i(s,r);
```


Progress so far through the core...

Done

- All demand equations

To do

- Zero pure profits
- Indirect tax equations
- Market-clearing
- Regional and national macroeconomic variables and price indexes

Building blocks

\checkmark Producer's demands for inputs
\checkmark Investor demands
\checkmark Household demands
\checkmark Export demands
\checkmark Government demands
\checkmark Margins demands
\checkmark Zero pure profits
\checkmark Indirect tax equations
\checkmark Market-clearing
\checkmark Regional and national macroeconomic variables and price indexes
\checkmark Government finances
\checkmark Capital accumulation and investment
\checkmark Regional population and labor market

Zero pure profits

Critical assumptions

- no pure profits in the production or distribution of commodities
- price received by the producer is uniform across all customers

Zero pure profits in current production imposed by setting unit prices received by producers equal to unit costs

Zero pure profits in distribution imposed by setting the prices paid by users equal to producer price plus commodity tax plus margins

Zero pure profits

```
E_p0a # Zero pure profits in current production #
(all,j,IND)(all,q,REGDEST)
(TINY+COSTS (j,q)) *{p0a(j,q) -a(j,q)}=
sum(i,COM,sum(s,ALLSOURCE,PVAL1A(i,s,j,q)*p1a(i,s,j,q)))
+sum(m,OCC,LAB_OCC_IND(m,j,q) *p1laboi(j,q,m))
+CAPITAL (j,q)*p1cap (j,q) +LAND (j,q)*p1land (j,q)
+OTHCOST(j,q)*ploct(j,q);
E_pi # Zero pure profits in capital creation #
(all,j,IND)(all,q,REGDEST)
    (TINY+INVEST(j,q))*(pi(j,q) -a2ind(j,q))=
sum(i,COM,sum(s,ALLSOURCE,PVAL2A(i,s,j,q)*p2a(i,s,j,q)));
E_p0ab # Zero pure profits in importing #
    (all,i,COM)
p0a(i,"foreign")=pm(i)+natphi+powtaxm(i);
```


Zero pure profits

```
E_pla # Purchasers prices - User 1 #
(all,i,COM) (all,j,IND) (all,q,REGDEST) (all, s,ALLSOURCE)
(TINY+PVALIA(i,s,j,q))*pla(i,s,j,q)
=[BASI(i,s,j,q)+TAX1(i,s,j,q)]*p0a(i, s)
+BASI (i,s,j,q)*deltax1 (i,s,j,q)+sum(r,MARGCOM,MAR1 (i, S,j,q,r)*
(p0a(r,q) +almarg_ij(s,q,r)+amarg_i (S,q,r)));
E_p2a # Purchasers prices - User 2 #
(all,i,COM) (all,j,IND) (all, q, REGDEST) (all, s,ALLSOURCE)
(TINY+PVAL2A(i,s,j,q))*p2a(i,s,j,q)=[BAS2(i,s,j,q)+TAX2(i, s,j,q)]*p0a
(i,s)
+BAS2(i,s,j,q)*deltax2(i,s,j,q)+sum(r,MARGCOM,MAR2(i, s,j,q,r)*
(p0a(r,q) +a2marg_ij(s,q,r)+amarg_i (s,q,r)));
E_p3a # Purchasers prices - User 3 #
(all,i,COM) (all,q,REGDEST) (all,s,ALLSOURCE)
(TINY+PVAL3A(i,s,q))*p3a(i,s,q)=[BAS3(i,s,q) +TAX3(i,s,q)]*p0a(i,s)
+BAS3(i,s,q)*deltax3(i,s,q)+sum(r,MARGCOM,MAR3(i, s,q,r)*
(p0a(r,q)+a3marg_i(s,q,r)+amarg_i(s,q,r)));
```


Zero pure profits

```
E_p4r # Purchasers prices - User 4 #
(all,i,COM)(all,s,REGSOURCE)
(TINY+PVAL4R(i,s))*(natphi+p4r(i,s)) = [BAS4(i,s) +TAX4(i,s)]*p0a(i,s)
+BAS4(i,s)*deltax4(i,s) +sum(r,MARGCOM,MAR4 (i,s,r)*
(p0a(r,s)+a4marg_i(s,r)));
E_p5a # Purchasers prices - User 5 #
(all,i,COM) (all,q,REGDEST) (all,s,ALLSOURCE)
(TINY+PVAL5A(i,s,q))*p5a(i,s,q)=[BAS5(i,s,q) +TAX5 (i,s,q)] *p0a(i,s)
+BAS5 (i,s,q)*deltax5 (i,s,q) +sum(r,MARGCOM,MAR5 (i,s,q,r)*
(p0a(r,q)+a5marg_i(s,q,r)+amarg_i(s,q,r)));
E_p6a # Purchasers prices - User 6 #
(all,i,COM) (all,s,ALLSOURCE) (all,q,REGDEST)
(TINY+PVAL6A(i,s,q))*p6a(i,s,q)=[BAS6(i,s,q) +TAX6(i,s,q)]*p0a(i,s)
+BAS6(i,s,q)*deltax6(i,s,q) +sum(r,MARGCOM,MAR6(i,s,q,r)*
(p0a(r,s)+a6marg_i(s,q,r)+amarg_i(s,q,r)));
```


Building blocks

\checkmark Producer's demands for inputs
\checkmark Investor demands
\checkmark Household demands
\checkmark Export demands
\checkmark Government demands
\checkmark Margins demands
\checkmark Zero pure profits
\checkmark Indirect tax equations
\checkmark Market-clearing
\checkmark Regional and national macroeconomic variables and price indexes
\checkmark Government finances
\checkmark Capital accumulation and investment
\checkmark Regional population and labor market

Indirect taxes

Equations have been added to enable flexible handling of indirect taxes on all flows of goods and services

Equations allow for variations in tax rates across commodities, their sources and destinations

Indirect taxes

```
E_deltax1 \# Tax rate on sales to User 1 \#
(all,i,COM) (all,s,ALLSOURCE) (all,j,IND) (all, q, REGDEST)
deltaxl(i,s,j,q)=deltax(i)+deltaxlall+deltaxsource(s)+deltaxdest(q);
E_deltax2 \# Tax rate on sales to User 2 \#
(all,i,COM) (all,s,ALLSOURCE) (all,j,IND) (all, q, REGDEST)
deltax2 (i,s,j,q)=deltax(i)+deltax2all+deltaxsource(s) +deltaxdest(q);
E_deltax3 \# Tax rate on sales to User 3 \#
(all,i,COM) (all,s,ALLSOURCE) (all, q, REGDEST)
deltax3(i,s,q)=deltax(i) +deltax3all+deltaxsource(s) +deltaxdest(q);
E_deltax4 \# Tax rate on sales to User 4 \#
(all,i, COM) (all,s,REGSOURCE)
deltax4 (i,s) =deltax (i) +deltax4all+deltaxsource (s)
+deltaxdest("foreign");
```


Building blocks

\checkmark Producer's demands for inputs
\checkmark Investor demands
\checkmark Household demands
\checkmark Export demands
\checkmark Government demands
\checkmark Margins demands
\checkmark Zero pure profits
\checkmark Indirect tax equations
\checkmark Market-clearing
\checkmark Regional and national macroeconomic variables and price indexes
\checkmark Government finances
\checkmark Capital accumulation and investment
\checkmark Regional population and labor market

Market-clearing

Equations that impose market clearing (demand equals supply) for:

- domestically produced margin and non-margin commodities
- imported commodities

Market-clearing

```
E_mkt_clear_margins # Demand equals supply for margin commodities #
(all,r,MARGCOM) (all,s,REGSOURCE)
(TINY+SALES (r,s))*z(r,s)=sum(j,IND,sum(q, REGDEST,BAS1 (r,s,j,q)*xla (r,s,j,q)
+BAS2 (r,s,j,q)*x2a(r,s,j,q))) +sum(q, REGDEST, BAS3 (r,s,q)*x3a(r,s,q))
+BAS4(r,s)*x4r(r,s)+sum(q, REGDEST,BAS5 (r,s,q)*x5a(r,s,q))
+sum(q,REGDEST, BAS6(r,s,q)*x6a(r,s,q))
+sum(j, IND, sum(i, COM, sum(ss,ALLSOURCE,MAR1 (i,ss,j,s,r)*xlmarg(i,ss,j,s,r)
+MAR2(i,SS,j,S,r)*x2marg(i,SS,j,s,r))))
+sum(i,COM, sum(ss,ALLSOURCE,MAR3(i,ss,s,r)*x3marg(i,ss,s,r)))
+sum(i,COM,MAR4(i,s,r)*x4marg(i,s,r))
+sum(i, COM, sum(ss,ALLSOURCE,MAR5 (i,ss,s,r)*x5marg(i,ss,s,r)))
+sum(i,COM, sum(SS,ALLSOURCE,MAR6(i,SS,S,r)*x6marg(i,SS,S,r)));
```


Market-clearing

```
E_mkt_clear_nomarg # Demand equals supply for non-margin commodities #
(all,r,NONMARGCOM) (all,s,REGSOURCE)
(TINY+SALES (r,s))*z(r,s)=sum(j,IND,sum(q, REGDEST,BAS1 (r,s,j,q)*xla(r,s,j,q)))
+sum(j,IND,sum(q,REGDEST,BAS2(r,s,j,q)*x2a(r,s,j,q)))
+\boldsymbol{sum}(q,\operatorname{REGDEST,BAS3 (r,s,q)*x3a(r,s,q))+BAS4(r,s)*x4r(r,s)}
+sum(q, REGDEST, BAS5 (r,s,q)*x5a(r,s,q)) +sum(q, REGDEST,BAS6(r,s,q)*x6a(r,s,q));
E_x0impa # Import volume of commodities by region #
(all,i,COM) (all,q,REGDEST)
(TINY+IMPORTS (i,q))*x0imp (i,q)=
sum(j,IND,BAS1(i,"foreign",j,q)*xla(i,"foreign",j,q)
+BAS2(i,"foreign",j,q)*x2a(i,"foreign",j,q))
+BAS3(i,"foreign",q) *x3a(i,"foreign",q)
+BAS5(i,"foreign",q)*x5a(i,"foreign",q) +BAS6(i,"foreign",q)*x6a(i,"foreign",q);
```


Building blocks

\checkmark Producer's demands for inputs
\checkmark Investor demands
\checkmark Household demands
\checkmark Export demands
\checkmark Government demands
\checkmark Margins demands
\checkmark Zero pure profits
\checkmark Indirect tax equations
\checkmark Market-clearing
\checkmark Regional and national macro variables and price indexes
\checkmark Government finances
\checkmark Capital accumulation and investment
\checkmark Regional population and labor market

Macro aggregates

Wide range of national and regional macro variables defined...
Two concepts of the real wage rate

- consumer real wage rate (PLAB/CPI)
" producer real wage rate (PLAB/PGDP)

Progress so far...

Done

- Core CGE equations relating to demand, supply, prices, indirect taxes, market-clearing and summary macro variables

To do

- Government finances
- Capital accumulation and investment
- Regional population and labor market

Building blocks

\checkmark Producer's demands for inputs
\checkmark Investor demands
\checkmark Household demands
\checkmark Export demands
\checkmark Government demands
\checkmark Margins demands
\checkmark Zero pure profits
\checkmark Indirect tax equations
\checkmark Market-clearing
\checkmark Regional and national macro variables and price indexes
\checkmark Government finances
\checkmark Capital accumulation and investment
\checkmark Regional population and labor market

Government finances

Value added disaggregation
Gross regional product
Miscellaneous linking equations
Summary of financial transactions
Household income

Government finances

Government finances

All equations blocks have backward links to the CGE core

- expenditure on primary factors is disaggregated into gross returns to primary factors and production taxes
- gross returns to primary factors is used in the determination of the income side of gross regional product
- factor incomes are used to determine household income
- production taxes are used in the determination of government budget balance

Notation

$\mathbf{z} \mathbf{Z}^{* *} \mathbf{r}$	value-added component in gross regional production
dompy***	domestic regional production, income component
dompq***	domestic regional production, expenditure component
softy***	summary of financial transaction, income component
softq***	summary of financial transaction, expenditure component
hhldy***	household income component

Disaggregation of regional value added

KEY

* The name in parenthesis indicates the corresponding array name in Figure 2.1Elements from the CGE Core.
Elements in the disaggregation-of-value-added

Disaggregation of regional value added

Core variables for industry wage bill, capital rental, land rental and other cost tickets disaggregated into:
" wages, salaries and supplements, imputed wages, payroll tax

- returns to fixed capital, property taxes
- returns to land, land taxes
- returns to working capital, other indirect taxes, sales by final buyers

Disaggregated components added to national account concepts of Wage income, GOS and Production taxes.

Together these comprise value added
Allowance also made for "Sales by final buyers"

Gross Regional Product

Gross Regional Product

Value added plus indirect taxes net of subsidies add to Gross Regional Product from the income side

Indirect taxes are the sum of tariffs and other commodities taxes net of subsidies taken from the CGE core

From the expenditure side, Gross Regional Product is the sum of expenditure by final users (government, households, investors and foreigners) less international imports plus net trade with the rest of Colombia

Gross Regional Product

Summary of financial transactions: SOFT accounts

Adapted in the CEER model for the Colombian case...

Also revenue side...

Household disposable income

Building blocks

\checkmark Producer's demands for inputs
\checkmark Investor demands
\checkmark Household demands
\checkmark Export demands
\checkmark Government demands
\checkmark Margins demands
\checkmark Zero pure profits
\checkmark Indirect tax equations
\checkmark Market-clearing
\checkmark Regional and national macro variables and price indexes
\checkmark Government finances
\checkmark Capital accumulation and investment
\checkmark Regional population and labor market

Investment "dynamics"

Capital, investment and expected rates of return

$$
K_{j, q}(t+1)=\left(1-D E P_{j, q}\right) \times K_{j, q}(t)+Y_{j, q}(t)
$$

Given starting point for capital ($\mathrm{t}=0$) and an explanation of investment, we can trace out time path for capital

Investment "dynamics"

Investment explained by assuming that:

$$
\frac{K_{j, q}(t+1)}{K_{j, q}(t)}-1=F_{j, q}^{t}\left[E R O R_{j, q}(t)\right]
$$

Growth in capital related to expected rate of return

- In CEER only assume static expectations, though rational is possible

Rates of return and investment

For static expectations case, the actual rate of return is:

$$
\begin{aligned}
& R O_{t}(j, q)=\frac{P_{t}(j, q)}{\Pi_{t}(j, q)}-D(j, q) \\
& \operatorname{ro}(j, q)=p_{t}(j, q)-\pi_{t}(j, q) \\
& \operatorname{ro}(j, q)=Q \operatorname{COEF}(j, q)\left[p_{t}(j, q)-\pi_{t}(j, q)\right]
\end{aligned}
$$

QCOEF: relação entre taxa bruta e taxa líquida de retorno (> 1)

Rates of return and investment

In long-run comparative-static simulations:

- aggregate capital adjusts to maintain $\mathrm{R}_{\mathrm{INT}}$ (natr_tot)
- capital allocated in line with equation E_f_rate_xx
- industries with relatively large increases in capital require relatively high rates of return
- industries with relatively small increases in capital require relatively low rates of return
- industry investment determined by fixed ratios of investment to capital (equation E_y)

Rates of return and investment

Equalization in the rates of return

$$
\begin{aligned}
& \left(\frac{K(j, q)}{K(q)}\right)^{-\beta(j, q)} R O(j, q)=R_{\mathrm{int}} \\
& r o(j, q)-r_{\mathrm{int}}=\beta_{t}(j, q)[k(j, q)-k(q)]+f_{-} r a t e(j, q)
\end{aligned}
$$

beta: risk/return ratio

Short-run: f_rate endogenous, k exogenous
Long-run: f_rate exogenous, k endogenous

Investment "dynamics"

Growth rate of capital stocks and investment in the short-run:

$$
\begin{array}{ll}
k_{t+1}(j, q)-k_{t}(j, q)=0 & \text { \% change in capital stocks } \\
y_{t}(j, q)=0 & \text { \% change in investment }
\end{array}
$$

Investment "dynamics"

Growth rate of capital stocks and investment in the long-run:

$$
\begin{aligned}
& \frac{K_{j, q}(t+1)}{K_{j, q}(t)}=\left(\frac{K_{j, q}(t)}{K_{j, q}(0)}\right)^{1 / T} \\
& k_{t+1}(j, q)=\left(1+\frac{1}{T}\right) k_{t}(j, q)
\end{aligned}
$$

Investment in the short run

Fixed capital stocks in the base year values:

- curcap (j, q) exogenous (=0)
- relationship between sectoral rates of return, $r O(j, q)$, and reference interest rate, natr_tot, is endogenous (f_rate_xx(j,q) endogenous)

Percentage change in sectoral investment, $y(j, q)$ is zero; this can be guaranteed by setting the shift term, delf_rate (j, q), exogenous and zero

By hypothesis, not only the capital stocks are fixed but also firms' investment plans

Investment in the short run

E_r0 \# Definition of rates of return to capital \# $r 0(j, q)=\operatorname{QCOEF}(j, q) *(p 1 \operatorname{cap}(j, q)-p i(j, q)) ;$

E_f_rate_xx \# Capital growth rates related to rates of return \#
$\left(r 0(j, q)-n a t r _t o t\right)=B E T A _R(j, q) *[\operatorname{curcap}(j, q)-$
$k t(q)]+f r a t e x x(j, q) ;$

E_curcapT1 \# Capital stock in period $T+1$ \# curcap_t1 (j, q) - curcap(j, q) $=0$;

E_yT \# Investment in period T \#
curcap(j,q) $-y(j, q)-100 *$ delfrate $(j, q)=0$;

Investment in the long run

Capital stocks endogenously determined:

- curcap (j, q) endogenous
- relationship between sectoral rates of return,, rO(j,q), and reference interest rate, natr_tot, is given (f_rate_xx(j,q) exogenous)

Percentage change in sectoral investment, $y(j, q)$ is endogenous

Firms' investment plans are carried out, reestablishing returns differentials in the base year

Rate of capital accumulation, but not the level of capital stock, remains constant

Investment in the long run

E_r0 \# Definition of rates of return to capital \#
rO $(j, q)=\operatorname{QCOEF}(j, q) *(p 1 \operatorname{cap}(j, q)-p i(j, q))$;
E_f_rate_xx \# Capital growth rates related to rates of return \#
$\left(r 0(j, q)-n a t r _t o t\right)=B E T A _R(j, q) *[\operatorname{curcap}(j, q)-k t(q)]+$ f_rate_x $\quad(j, q)$;

E_curcapT1 \# Capital stock in period T+1 \# curcap_t1 (j,q) - K_TERM*curcap(j,q)=0;

E_yT \# Investment in period T \#
$\operatorname{VALK} \mathrm{T1}(j, q) *$ curcap_t1 $(j, q)=\operatorname{VALKT}(j, q) * \operatorname{DEP}(j) * \underline{\operatorname{curcap}(j, q)}$
$+(\operatorname{INVEST}(j, q)) * y(j, q)-100 *\left(V A L K _0(j, q) *(1-\operatorname{DEP}(j))\right.$
endog.

Building blocks

\checkmark Producer's demands for inputs
\checkmark Investor demands
\checkmark Household demands
\checkmark Export demands
\checkmark Government demands
\checkmark Margins demands
\checkmark Zero pure profits
\checkmark Indirect tax equations
\checkmark Market-clearing
\checkmark Regional and national macro variables and price indexes
\checkmark Government finances
\checkmark Capital accumulation and investment
\checkmark Regional population and labor market

Regional population and labor market

Critical variables:

- regional population
- regional migration
- regional unemployment
- regional participation rates
- regional wage relativities

Various closures

Regional population and labor market

(1) Fixed
" wage relativities (determining employment by region), participation and unemployment rates (determining population by region)
(1) Endogenous

- regional migration
(2) Fixed
- regional migration, participation rates, wage relativities
(2) Endogenous
" unemployment rates
(3) Fixed
" regional migration, participation and unemployment rates
(3) Endogenous
- wage relativities

Labor market in the short-run

```
E_wage_diff # Region real-wage diff #(all,q,REGDeST)
wage_diff(q) = pwage(q) - natxi3 - natrealwage;
```

E_del_labsup \# P-point changes in regional
unemployment rates \#(all,q,REGDEST)
C_labsup $(q) * \operatorname{del} \quad$ unr $(q)=C _\operatorname{EMPLOY}(q) *(\operatorname{labsup}(q)-$
$\operatorname{employ}(q)) ;$
del_unr(q) \# Percentage-point changes in regional unemployment rate \#;

Labor market in the long-run

E_wage_diff \# Region real-wage diff \#(all,q,REGDEST)
wage_diff $(q)=$ pwage (q) - natxi3 - natrealwage;
E_del_labsup \# P-point changes in regional unemployment rates \#(all,q, REGDEST)

$$
\begin{aligned}
& \text { C_labsup (q)*del_unr (q)=C_EMPLOY(q)*(labsup (q) - } \\
& \text { employ(q)); }
\end{aligned}
$$

del_unr(q) \# Percentage-point changes in regional unemployment rate \#;

Closures

Each equation explains a variable
More variables than equations
Endogenous variables: explained by model
Exogenous variables: set by user
Closure: choice of exogenous variables
Many possible closures
Number of endogenous variables $=$ Number of equations

Length of run, T

T is related to our choice of closure
With short-run closure we assume that:
" T is long enough for price changes to be transmitted throughout the economy, and for price-induced substitution to take place

- T is not long enough for investment decisions to greatly affect the useful size of sectoral capital stocks [new buildings and equipment take time to produce and install]

T might be 2 years. So results mean:

- A 10\% consumption increase might lead to employment in 2 years time being 1.2\% higher than it would be (in 2 years time) if the consumption increase did not occur.

Different closures

Many closures might be used for different purposes
No unique natural or correct closure
Must be at least one exogenous variable measured in local currency units

Normally just one - called the numéraire
Often the exchange rate, natphi, or natxi3, the CPI.
Some quantity variables must be exogenous, such as:

- primary factor endowments
- final demand aggregates

Short-run environment

Long-run environment

