

MATRIZ INTER-REGIONAL DE INSUMO-PRODUTO MINAS GERAIS / RESTO DO BRASIL: ESTIMAÇÃO E EXTENSÃO PARA EXPORTAÇÕES

Eduardo A. Haddad Edson P. Domingues

TD Nereus 18-2003

São Paulo 2003

Matriz Inter-regional de Insumo-Produto Minas Gerais/Resto do Brasil: estimação e extensão para exportações

Edson P. Domingues Lduardo A. Haddad

(Versão Preliminar)

RESUMO: Este trabalho utiliza uma matriz inter-regional de insumo-produto, que divide a economia brasileira em duas regiões, Estado de Minas Gerais e Resto do Brasil, para avaliar a participação das exportações na estrutura da economia mineira. Essa extensão da matriz, que identifica mercados de destino das exportações, é implementada de forma que decomposições a partir de um modelo de insumo-produto permitam estudar a importância relativa dos componentes doméstico e externo da demanda final na produção dos setores de Minas Gerais.

I. Introdução

O objetivo deste trabalho é utilizar uma matriz inter-regional de insumo-produto para avaliar a importância das exportações na economia mineira. Essa matriz divide a economia brasileira em duas regiões: Estado de Minas Gerais e Resto do Brasil. Para este trabalho, essa matriz foi atualizada para algumas informações setoriais e aprimorada a fim de suprir algumas incorreções anteriores. Além disso, informações sobre o destino das exportações regionais foram incluídas.

[↑] Doutorando em Economia, FEA, Universidade de São Paulo (*epdomin@usp.br*)

^{*} Professor, FEA, Universidade de São Paulo, e REAL, Universidade de Illinois (ehaddad@usp.br)

¹ A metodologia empregada na sua estimação é descrita em Haddad e Domingues (2001). O resultado preliminar foi apresentado em trabalho publicado pelo Banco de Desenvolvimento de Minas Gerais (BDMG, 2001), e está disponível em CD-ROM.

Existem diversas alternativas de regionalização de matrizes de insumo-produto.² A aplicação de determinada alternativa depende basicamente do objetivo de estudo e das informações disponíveis. Um dos métodos de regionalização mais utilizados baseia-se na utilização do Quociente Locacional (*QL*), empregado em diversos trabalhos para a economia brasileira, como em Haddad e Hewings (1998) e Haddad (1999).³

A hipótese primordial no método de *QL* para regionalização de matrizes de insumoproduto é que as tecnologias setoriais nacionais e regionais são idênticas. Dessa forma os setores nas duas regiões especificadas (Minas Gerais e Resto do Brasil) utilizam a mesma receita de produção, isto é, apresentam os mesmos coeficientes de requisitos técnicos do respectivo setor nacional. Assim,

$$a_{ij} = a_{ij}^{l} = r_{ij} + m_{ij} (1)$$

onde a_{ij} e a_{ij}^l são os coeficientes de requisitos técnicos nacional e regional do insumo (setor) i utilizado pelo setor j, e podem ser decompostos de acordo com a origem do insumo utilizado pelo setor i, seja ele proveniente da própria região (r) ou de fora dela (m). Como a economia foi dividida em duas regiões, quatro matrizes de coeficientes foram estimadas, duas de coeficientes intra-regionais (r_{ij}) e duas de coeficientes interregionais (m_{ij}) .

_

² Sobre métodos de regionalização ver Miller e Blair (1985) e Comer e Jackson (1997).

³ Nestes trabalhos esta metodologia foi aplicada como primeiro estágio de estimação de um processo mais intensivo em informações, pois os autores também dispunham de dados censitários para regionalização da matriz de insumo-produto. Devido a mudanças de metodologia o IBGE deixou de realizar pesquisas como o Censo Econômico de 1985 e passou a fornecer informações regionais parciais (e.g.Contas Regionais e PIA).

O passo seguinte é escolher um estimador apropriado para r_{ij} . A literatura em economia regional apresenta numerosas contribuições quanto a este problema, e um resumo de várias abordagens encontra-se em Miller e Blair (1985). Hulu e Hewings (1993) consideram que existe pouca evidência empírica quanto ao melhor método de estimação e empregam uma metodologia considerada parcimoniosa, partindo de estimativas de quocientes locacionais simples.

A existência de informações sobre o comércio interestadual brasileiro (CONFAZ, 1999) permite uma comparação com a estimativa obtida diretamente por quocientes locacionais. Os dados do CONFAZ representam a estrutura de comércio entre os estados brasileiros para o ano de 1997.⁴ Para que uma comparação entre as duas fontes pudesse ser feita, dado que o sistema inter-regional estimado por *QL* tem como ano base 1996, as informações do CONFAZ foram ajustadas para esse ano pela proporção do valor adicionado. A Tabela 1 compara os resultados obtidos da matriz estimada e do Confaz.

⁴ Uma análise da alteração estrutural do comércio inter-regional brasileiro entre 1985 e 1997, a partir destes dados, encontra-se em Domingues *et al.* (2002).

Tabela 1 Fluxos comerciais Inter-regionais, comparação de Estimativas (1996)

		Minas Ge	rais	Resto do Brasil			
CONFAZ	Exportações Importações Saldo	R\$ bi 40,611 39,047 1,563	% VA 56,63 54,45 2,18%	R\$ bi 39,047 40,611 -1,563	% VA 5,91 6,15 -0,24		
Quociente Locacional	Exportações Importações Saldo	63,352 28,645 34,707	88,34 39,94 48,39	28,645 63,352 -34,707	4,34 9,59 -5,26		

Fonte: BDMG (2001)

A diferença entre as duas estimativas é substancial. O método de quocientes locacionais parece superestimar de maneira importante os fluxos comerciais inter-regionais. Numa tentativa de obter estimativas mais próximas do resultado do CONFAZ, um método *ad hoc* foi utilizado para rebalancear os totais das matrizes. A metodologia empregada está descrita em Haddad e Domingues (2001).

O resultado final desse método de ajuste foi apresentado em trabalho publicado pelo Banco de Desenvolvimento de Minas Gerais (BDMG, 2001). Duarte Filho e Chiari (2002) apresentam uma análise exploratória dessa matriz, a partir de decomposições e multiplicadores de insumo-produto.

Para este trabalho, essa matriz inter-regional foi atualizada para algumas informações setoriais e aprimorada a fim de suprir algumas incorreções anteriores. Outra modificação efetuada consistiu na especificação de um conjunto de mercados de destino das exportações: Argentina, Resto do Mercosul, Nafta, Resto da Alca, União Européia, Japão

e Resto do Mundo.⁵ Dessa forma, as exportações de cada um dos 42 setores em cada região (Minas Gerais e Resto do Brasil) são identificadas.

Essa especificação da matriz inter-regional é completada com a agregação dos demais componentes da demanda final em dois vetores regionais. Assim, a demanda final passa a ser composta por dois blocos, doméstico e externo.

Este trabalho se divide em duas partes, além desta introdução. A seção 2, a seguir, mostra a integração de dados sobre exportações a essa matriz, e a implementação do modelo de insumo-produto. A partir desse modelo, uma decomposição específica é efetuada, a fim de avaliar a importância relativa de vetores localizados da demanda final na produção dos setores mineiros. A seção 3 apresenta as considerações finais.

⁵ O Resto do Mercosul é compreendido por Uruguai e Paraguai; o Resto da Alca pelos países do continente americano exceto os do Mercosul e Nafta; o Resto do Mundo é o bloco residual.

II. Exportações e Decomposição da Produção

Em 1996, o total das exportações de Minas Gerais foi de cerca de R\$ 6,4 bilhões de reais (valores correntes), ou 9,28 % do Produto Regional Bruto mineiro. Naquele ano, o volume exportado por Minas representou cerca de 12% das exportações brasileiras. A Tabela 2 apresenta os dados referentes às exportações de Minas Gerais, para 31 setores da indústria e agropecuária. Esta tabela mostra a concentração das exportações mineiras para a União Européia e Nafta, que perfazem cerca de 52% das exportações totais. A pauta de exportações mostra-se também setorialmente concentrada, na medida que três produtos representam cerca de 67% do total: extrativa mineral, siderurgia e indústria do café.

A combinação destes dados mostra uma concentração setorial/regional importante: produtos siderúrgicos vendidos para o Nafta (11% do total exportado) e para o Resto do mundo (8%), produtos da indústria extrativa mineral exportados para o Resto do Mundo (8%), exportações de café para a União Européia (9,5%). Estes quatro componentes representam juntos cerca de 36% do total das exportações mineiras. Interessante notar que produtos com pouco peso na pauta de exportações mineiras, como calçados (S23), carnes (S25) e químicos (S18), mostram elevada concentração com destino à União Européia, por exemplo.

_

⁶ As exportações de serviços não são apresentadas, pois representam um componente pouco relevante, e sua regionalização foi obtida pela proporção simples dos dados nacionais (do IBGE), uma vez que informações regionais não se encontravam disponíveis. A especificação destas exportações é importante apenas para completar a especificação setorial do modelo de insumo-produto.

Tabela 2 Exportações de Minas Gerais, por destino, 1996 (%)

	Argentina	R. Merc.	Nafta	R. Alca	UE	Japão	R. Mundo	Total
S1 Agropecuária	3,225	0,355	0,467	15,893	27,616	16,355	36,090	1,530
S2 Extrativa mineral	3,902	0,019	7,300	0,338	38,973	14,677	34,791	22,953
S4 Minerais não-metálicos	8,492	2,003	16,211	5,592	55,212	2,147	10,343	1,660
S5 Siderurgia	7,785	1,179	37,379	6,483	9,934	9,905	27,335	30,077
S6 Metalurgia dos não-ferrosos	2,937	2,101	53,097	0,639	19,497	6,660	15,070	5,276
S7 Outros metalúrgicos	55,241	17,075	2,537	9,887	8,633	0,000	6,627	0,071
S8 Máquinas e tratores	7,181	1,644	57,388	12,135	8,628	7,400	5,623	3,233
S9 Material elétrico	12,006	8,962	33,358	11,787	26,565	0,000	7,322	1,438
S10 Material eletrônico	4,052	0,959	23,913	18,514	41,354	0,323	10,886	0,268
S11 Automóveis, caminhões e ônibus	24,556	7,336	10,024	11,430	42,460	0,007	4,188	6,429
S12 Outros veículos, peças e acessórios	0,000	0,000	0,000	88,291	11,709	0,000	0,000	0,001
S13 Madeira e mobiliário	29,330	4,427	22,511	1,284	27,014	0,585	14,848	0,103
S14 Papel e gráfica	0,645	0,030	15,558	1,481	31,963	48,186	2,138	3,411
S15 Borracha	45,911	3,547	4,128	21,783	19,508	0,000	5,123	0,026
S16 Químicos não-petroquímicos	2,807	0,528	28,963	3,734	20,495	36,506	6,966	3,525
S17 Refino de petróleo e ind. petroquímica	0,034	0,000	0,000	0,285	17,737	2,111	79,834	0,050
S18 Químicos diversos	17,534	16,806	9,396	7,064	44,139	4,117	0,944	0,286
S19 Farmacêuticos e perfumaria	8,074	6,721	16,645	12,810	0,703	0,000	55,047	0,032
S20 Material plástico	78,763	8,528	0,127	10,667	0,571	0,000	1,345	0,625
S21 Têxtil	45,063	11,607	2,435	22,373	15,886	0,030	2,606	0,772
S22 Vestuário e acessórios	0,000	8,576	0,000	82,633	0,000	0,000	8,791	0,000
S23 Calçados e artigos de couro e peles	0,256	0,387	11,666	0,467	70,195	0,035	16,996	0,862
S24 Indústria do café	3,839	0,111	12,986	0,288	61,112	10,970	10,693	15,521
S25 Prod. Benef. de origem vegetal	52,473	43,959	0,000	0,687	1,197	0,000	1,684	0,290
S26 Carnes	0,508	0,000	0,000	0,000	52,798	11,234	35,460	0,158
S27 Leite e laticínios	25,663	33,005	0,006	17,160	6,459	17,708	0,000	0,011
S28 Indústria do açúcar	0,000	11,487	4,432	2,711	0,000	0,000	81,371	0,182
S29 Óleos vegetais	0,000	7,422	7,708	1,488	42,610	32,167	8,604	0,100
S30 Bebidas e outros alimentos	3,793	0,407	0,581	0,414	54,912	0,544	39,348	0,919
S31 Indústrias diversas	20,939	15,250	23,518	15,507	12,960	0,000	11,827	0,051
Total	7,474	1,587	22,841	4,275	30,715	11,945	21,163	100.000

Fonte: Sistema ALICE – MDIC, elaboração própria

Uma análise mais informativa do papel das exportações na estrutura da economia mineira pode ser obtida a partir do modelo de insumo-produto inter-regional. Dessa forma, aspectos de conexões setoriais, dependência inter-regional e *feedbacks* podem ser avaliados conjuntamente.

Essa abordagem complementar de insumo-produto, que possibilita decompor a produção setorial em cada região levando em conta não só a estrutura dos multiplicadores, mas também a estrutura da demanda final em cada região, foi proposta por Sonis *et al.* (1996). Esse tipo de decomposição, para três regiões brasileiras, foi implementada em Haddad (1999); Domingues (2000) utilizou esta abordagem no sistema inter-regional São Paulo/Resto do Brasil. Duarte Filho e Chiari (2002) empregaram esse tipo de decomposição na mesma matriz inter-regional Minas Gerais/Resto do Brasil utilizada neste trabalho, mas para vetores regionais da demanda final.

O modelo inter-regional de insumo produto é calculado a partir da matriz inter-regional de coeficientes técnicos, *A*. Essa matriz representa as relações setoriais, regionais e inter-regionais, de compras e vendas para consumo intermediário. A matriz inversa de Leontief, *B*, pode ser particionada em quatro blocos, intra e inter-regionais. Assim,

$$A = \begin{bmatrix} A^{rr} & A^{rR} \\ A^{Rr} & A^{RR} \end{bmatrix} \rightarrow B = (I - A)^{-1} = \begin{bmatrix} B^{rr} & B^{rR} \\ B^{Rr} & B^{rr} \end{bmatrix}$$

$$(2)$$

A matriz A tem dimensão 84x84 (42 setores em cada região), e cada partição de B tem dimensão 42x42. O modelo de insumo-produto inter-regional pode ser reescrito de forma a identificar também os vetores regionais da demanda final, de acordo com seu destino. Assim,

$$\begin{bmatrix} B_{rr} & B_{rR} \\ B_{Rr} & B_{RR} \end{bmatrix} * \begin{bmatrix} f_r^r \\ f_R^R \end{bmatrix} + \begin{bmatrix} f_{R}^r \\ f_R^R \end{bmatrix} + \begin{bmatrix} f_{AR}^r \\ f_{AR}^R \end{bmatrix} + \begin{bmatrix} f_{ME}^r \\ f_{RM}^R \end{bmatrix} + \begin{bmatrix} f_{RM}^r \\ f_{RM}^R \end{bmatrix} + \begin{bmatrix} f_{NA}^r \\ f_{NA}^R \end{bmatrix} + \begin{bmatrix} f_{RM}^r \\ f_{RM}^R \end{bmatrix} + \begin{bmatrix} f_{RW}^r \\ f_{RW}^R \end{bmatrix} + \begin{bmatrix} f_{RW}^r \\$$

para:

r= Minas Gerais, R= Resto do Brasil, AR= Argentina, ME= Mercosul, RM= Resto do Mercosul, NA= Nafta, RA= Resto da Alca, UE= União Européia, JP= Japão, RW= Resto do Mundo

 f_j^i = vetor da demanda final da região j por produtos da região i, para i=r,R e j=r,R,AR,ME,RM,NA,RA,UE,JP,RM

 B_{rr} , B_{rR} , B_{Rr} , B_{RR} = partições da matriz inversa de Leontief (B) do sistema inter-regional de insumo-produto

 X_i = vetor da produção setorial na região i, para i = r, R

Dessa forma, a demanda final foi dividida em 10 vetores de dimensão 1x84, representando os destinos (regionais e externos) da produção dos setores mineiros e do Resto do Brasil.

O sistema (3) pode ser reescrito como:

$$B_{rr}(f_r^r + f_R^r) + B_{rr}(f_{AR}^r + f_{ME}^r + f_{RM}^r + f_{NA}^r + f_{RA}^r + f_{UE}^r + f_{JP}^r + f_{RW}^r) +$$

$$B_{rR}(f_R^r + f_R^R) + B_{rR}(f_{AR}^R + f_{ME}^R + f_{RM}^R + f_{NA}^R + f_{RA}^R + f_{UE}^R + f_{JP}^R + f_{RW}^R) = X_r$$

$$(4)$$

$$B_{Rr}(f_r^r + f_R^r) + B_{Rr}(f_{AR}^r + f_{ME}^r + f_{RM}^r + f_{NA}^r + f_{RA}^r + f_{UE}^r + f_{JP}^r + f_{RW}^r) + B_{RR}(f_{R}^r + f_{R}^r) + B_{RR}(f_{AR}^R + f_{ME}^R + f_{RM}^R + f_{NA}^R + f_{RA}^R + f_{UE}^R + f_{JP}^R + f_{RW}^R) = X_R$$
(5)

Rearranjando (4) e (5) e dividindo cada elemento pelo respectivo vetor de produção, obtêm-se:

$$\frac{B_{rr}f_{r}^{r}}{X_{r}} + \frac{B_{rR}f_{R}^{R}}{X_{r}} + \frac{B_{rr}f_{R}^{r} + B_{rR}f_{r}^{R}}{X_{r}} + \frac{B_{rr}f_{R}^{r} + B_{rR}f_{R}^{R}}{X_{r}} + \frac{B_{rr}f_{RR}^{r} + B_{rR}f_{RR}^{R}}{X_{r}} + \frac{B_{rr}f_{RM}^{r} + B_{rR}f_{RM}^{R}}{X_{r}} + \frac{B_{rr}f_{RM}^{r} + B_{rR}f_{RM}^{R}}{X_{r}} + \frac{B_{rr}f_{RM}^{r} + B_{rR}f_{RR}^{R}}{X_{r}} + \frac{B_{rr}f_{RM}^{r} + B_{rR}f_{RR}^{R}}{X_{r}} + \frac{B_{rr}f_{RM}^{r} + B_{rR}f_{RR}^{R}}{X_{r}} + \frac{B_{rr}f_{RM}^{r} + B_{rR}f_{RM}^{R}}{X_{r}} + \frac{B_{rR}f_{RM}^{r} + B_$$

e

$$\frac{B_{Rr}f_{r}^{r}}{X_{R}} + \frac{B_{RR}f_{R}^{R}}{X_{R}} + \frac{B_{Rr}f_{R}^{r} + B_{RR}f_{r}^{R}}{X_{R}} + \frac{B_{Rr}f_{RR}^{r} + B_{RR}f_{RR}^{R}}{X_{R}} + \frac{B_{Rr}f_{RR}^{r} + B_{RR}f_{RM}^{R}}{X_{R}} + \frac{B_{Rr}f_{RM}^{r} + B_{RR}f_{RM}^{R}}{X_{R}} + \frac{B_{Rr}f_{RM}^{r} + B_{RR}f_{RM}^{R}}{X_{R}} + \frac{B_{Rr}f_{RM}^{r} + B_{RR}f_{RM}^{R}}{X_{R}} + \frac{B_{Rr}f_{RR}^{r} + B_{RR}f_{RR}^{R}}{X_{R}} + \frac{B_{RR}f_{RR}^{r} +$$

As equações (6) e (7) representam a decomposição da produção regional em 10 componentes. Cada componente mostra a influência relativa do respectivo vetor de demanda final na produção regional setorial.

A Tabela 3 mostra a classificação desses componentes de acordo com a origem do vetor de demanda final. Por exemplo, na coluna *Minas Gerais*, c_1 é o vetor de influência relativa da demanda final mineira por produtos mineiros (f_r^r) na produção setorial da região. O vetor c_2 mede a influência relativa da demanda final no Resto do Brasil por produtos dessa região (f_R^R) na produção setorial mineira. Portanto, representa a parcela da produção mineira influenciada pela demanda local do Resto do Brasil. A influência da demanda inter-regional (atendida via comércio) é captada pelo vetor c_3 , quer da demanda mineira por bens produzidos no Resto do Brasil (f_r^R) como vice-versa (f_R^r) . Finalmente, a influência relativa da demanda externa na produção regional é captada pelos vetores c_4 a c_{10} . Como mostram as equações (6) e (7), a soma desses vetores resulta num vetor unitário, ou seja, essa decomposição esgota a produção regional por seus possíveis destinos.

A tabela 4 traz os resultados da decomposição múltipla da produção em Minas Gerais, de acordo com os vetores c_1 a c_{10} . A concentração das exportações, por produto e mercado externo, aparece também nos resultados obtidos. Num grupo de 5 setores as exportações mostram-se relativamente mais importantes como estímulo à produção setorial mineira: extrativa mineral (S2), siderurgia (S5), metalurgia dos não-ferrosos (S6), material plástico (S20) e indústria do café (S24). Nestes setores, existe também uma concentração em mercados externos específicos. Na produção da indústria extrativa mineral, da União Européia e Resto do Mundo; na siderurgia, do Nafta e Resto do Mundo; na metalurgia dos não-ferrosos, do Nafta; em material plástico, da Argentina; na indústria do café, da União Européia.

Interessante notar o papel das exportações nos setores-chave da economia mineira identificados em Duarte Filho e Chiari (2002). As exportações aparecem como muito relevantes para o setor siderúrgico, e relativamente menos importantes em outros setores-chave, como outros metalúrgicos (S7), material elétrico (S9) e máquinas e tratores (S8). Dessa forma, a dinâmica destes últimos setores na economia mineira parece estar mais ligada a suas inter-relações locais e regionais do que ao mercado externo. Em geral, componentes locais da demanda são mais importantes para a produção. Além disso, é significativa a participação da demanda final inter-regional na produção de alguns setores da economia mineira, como automóveis (S11), indústria do açúcar (S28), óleos vegetais (S29) e vestuário (S22).

Tabela 3 Decomposição Múltipla da Produção

Con	nponente	Minas Gerais	Resto do Brasil			
c_1	Intra-Regional, Local	$\frac{B_{rr}f_r^r}{X_r}$	$\frac{B_{RR}f_R^{\ R}}{X_R}$			
c_2	Intra-Regional, Externo	$\frac{B_{rR}f_R^R}{X_r}$	$\frac{B_{Rr}f_r^r}{X_R}$			
<i>C</i> ₃	Inter-Regional	$\frac{B_{rr}f_R^r + B_{rR}f_r^R}{X_r}$	$\frac{B_{Rr}f_R^r + B_{RR}f_r^R}{X_R}$			
c_4	Externo, Argentina	$\frac{B_{rr}f_{AR}^r + B_{rR}f_{AR}^R}{X_r}$	$\frac{B_{Rr}f_{AR}^r + B_{RR}f_{AR}^R}{X_R}$			
<i>C</i> ₅	Externo, Resto do Mercosul	$\frac{B_{rr}f_{RM}^r + B_{rR}f_{RM}^R}{X_r}$	$\frac{B_{Rr}f_{RM}^r + B_{RR}f_{RM}^R}{X_R}$			
<i>C</i> ₆	Externo, Nafta	$\frac{B_{rr}f_{NA}^{r} + B_{rR}f_{NA}^{R}}{X_{r}}$	$\frac{B_{Rr}f_{NA}^r + B_{RR}f_{NA}^R}{X_R}$			
<i>C</i> ₇	Externo, Resto da Alca	$\frac{B_{rr}f_{RA}^r + B_{rR}f_{RA}^R}{X_r}$	$\frac{B_{Rr}f_{RA}^r + B_{RR}f_{RA}^R}{X_R}$			
c_8	Externo, União Européia	$\frac{B_{rr}f_{UE}^{r} + B_{rR}f_{UE}^{R}}{X_{r}}$	$\frac{B_{Rr}f_{UE}^r + B_{RR}f_{UE}^R}{X_R}$			
C 9	Externo, Japão	$\frac{B_{rr}f_{JP}^{r} + B_{rR}f_{JP}^{R}}{X_{r}}$	$\frac{B_{Rr}f_{JP}^{r} + B_{RR}f_{JP}^{R}}{X_{R}}$			
c_{10}	Externo, Resto do Mundo	$\frac{B_{rr}f_{RW}^r + B_{rR}f_{RW}^R}{X_r}$	$\frac{B_{Rr}f_{RW}^r + B_{RR}f_{RW}^R}{X_R}$			

Tabela 4 Decomposição múltipla da produção setorial de acordo com a origem da demanda final: Minas Gerais, 1996 (%)

	Intra-r	egional	Inter-			1	Externa				
	M.Gerais	R. Brasil	Regional	Argentina	R. Merc.	Nafta	R. Alca	UE	Japão	R. Mundo	Total
SI	26,434	35,915	25,084	0,631	0,282	1,949	0,480	4,998	1,243	2,985	12,567
S2	12,395	11,755	9,990	2,869	0,199	6,744	0,671	24,069	9,357	21,951	65,859
S4	50,943	12,071	28,525	0,746	0,210	1,720	0,493	3,571	0,451	1,269	8,460
S5	27,650	12,504	25,331	2,938	0,561	12,403	2,420	3,872	3,185	9,136	34,515
S6	8,156	35,854	8,628	2,355	1,201	21,564	1,139	9,266	4,292	7,545	47,361
S7	37,857	23,792	27,839	1,256	0,379	2,788	0,803	2,428	0,819	2,040	10,513
S8	32,128	19,030	26,368	1,908	0,516	8,852	1,986	3,880	2,008	3,323	22,473
S9	33,652	28,108	20,136	2,205	1,401	5,903	2,026	4,457	0,321	1,791	18,104
S10	47,557	33,815	13,471	0,498	0,174	1,271	0,736	1,489	0,149	0,840	5,157
S11	40,461	0,606	52,750	1,508	0,449	0,640	0,704	2,591	0,011	0,281	6,184
S12	1,767	80,093	3,684	3,330	0,728	2,234	4,427	1,794	0,249	1,695	14,456
S13	14,899	67,993	8,157	1,378	0,344	2,213	0,444	2,691	0,354	1,527	8,951
S14	15,995	44,459	14,196	0,816	0,283	4,254	0,711	7,886	9,528	1,873	25,351
S15	28,775	42,746	19,925	1,718	0,592	2,181	1,085	1,530	0,201	1,246	8,554
S16	22,978	35,900	19,602	1,197	0,440	5,877	1,029	4,784	5,555	2,638	21,521
S17	15,409	61,854	13,409	1,175	0,514	1,950	0,765	2,289	0,547	2,088	9,327
S18	11,561	63,557	11,950	1,419	0,826	2,398	0,887	4,051	0,814	2,536	12,932
S19	45,061	19,321	32,786	0,206	0,123	0,479	0,176	0,831	0,184	0,832	2,831
S20	17,283	28,720	8,562	33,396	3,756	1,016	4,759	1,140	0,146	1,222	45,435
S21	8,197	70,173	7,818	3,704	1,236	1,939	2,154	2,664	0,387	1,729	13,812
S22	57,768	6,303	34,704	0,152	0,053	0,276	0,104	0,286	0,078	0,274	1,224
S23	33,464	13,489	28,770	0,331	0,243	6,446	0,430	12,955	0,132	3,741	24,278
S24	10,497	5,483	9,779	2,875	0,138	9,718	0,241	45,058	8,125	8,086	74,240
S25	31,188	36,475	24,103	1,221	1,088	0,488	0,132	3,203	0,306	1,797	8,234
S26	45,332	10,569	41,567	0,088	0,036	0,581	0,054	0,974	0,173	0,626	2,532
S27	40,200	27,216	22,735	2,403	3,075	0,062	1,640	0,850	1,667	0,151	9,849
S28	38,834	18,051	35,924	0,204	0,326	0,972	0,254	1,181	0,476	3,779	7,191
S29	36,405	23,102	33,962	0,280	0,206	0,883	0,190	2,741	0,503	1,729	6,531
S30	8,210	68,408	9,140	0,645	0,263	1,146	0,300	6,734	0,591	4,564	14,242
S31	39,902	19,223	34,473	0,593	0,210	1,794	0,413	1,353	0,685	1,353	6,402

fonte: elaboração própria

III. Considerações Finais

Este trabalho apresentou uma extensão da matriz inter-regional Minas Gerias/Resto do Brasil, que identifica o destino das exportações regionais num conjunto de mercados externos. Uma decomposição a partir de um modelo de insumo-produto foi implementada, permitindo identificar a importância relativa dos vetores espaciais da demanda final na produção dos setores mineiros. Dessa forma, aspectos de conexões setoriais, dependência inter-regional, *feedbacks* e inserção externa puderam ser conjuntamente avaliados, dentro do arcabouço teórico de um modelo inter-regional de insumo-produto.

A particular representação do mercado externo efetuada neste trabalho vislumbra uma análise das implicações da formação da Alca sobre a economia brasileira, e de Minas Gerais em particular. Para isso, um esforço adicional de pesquisa precisa ser empreendido, especificamente na abertura dos fluxos de importação e na estimação de barreiras comerciais. A incorporação dessas informações à matriz inter-regional de insumo-produto permitirá estudar os impactos setoriais e regionais de estratégias de política comercial.

A agregação de informações à matriz se insere numa estratégia de estimação da base de dados de um modelo de equilíbrio geral computável (EGC) inter-regional, similar a

outros trabalhos já elaborados para a economia brasileira (e.g. Haddad, 1999). Assim, um modelo EGC inter-regional para a economia mineira poderá ser implementado, possibilitando simulações de política e estudos setoriais, permitindo uma análise mais completa e integrada de impactos específicos sobre a economia mineira.

Bibliografia

BDMG (2001) *Matriz Inter-regional de Insumo-Produto, Minas Gerais/Resto do Brasil* - 1996. Belo Horizonte, BDMG.

Comer, J. C., Jackson, R. W. (1997) A Note on Adjusting National Input-Output Data for Regional Table Construction. *Journal of Regional Science*, *37* (1): 145-153, 1997.

CONFAZ (1999) Balança Comercial Interestadual de 1997. Brasília, Ministério da Fazenda.

Domingues, **E. P.** (2000) Inter-relações regionais na economia brasileira: economia paulista. *Informações FIPE*, *245* : 21-23.

Domingues, E. P., Hewings, G. J. D., Haddad, E. A., Perobelli, F. (2002) Structural Changes in the Brazilian Interregional Economic System, 1985-1997: Holistic Matrix Interpretation. *Australasian Journal of Regional Studies*, 8 (1).

Duarte Filho, F. C., Chiari, J. R. P. (2002) Características estruturais da economia mineira. *Cadernos BDMG (4)*. Belo Horizonte, BDMG, 2002.

Haddad, E. A. (1999) Regional Inequality and Structural Changes: Lessons from the Brazilian Economy. Ashgate: Aldershot.

Haddad, E. A., Domingues, E. P. (2001) Matriz Inter-regional de Insumo-Produto: São Paulo/Resto do Brasil. Relatório de Pesquisa. São Paulo, Universidade de São Paulo, Instituto de Pesquisas Econômicas.

Haddad, E. A., Hewings, G. J. D. (1998) Linkages and Interdependence in the Brazilian Economy: An Evaluation of the Interregional Input-Output System, 1985. Discussion

Paper. Urbana, University of Illinois at Urbana-Champaign, Regional Economics Applications Laboratory.

Hewings, G. J. D., Sonis, M., Madden, M., Kimura, Y. (1999) Understanding and Interpreting Economic Structure. New York: Springer.

Hulu, E. A., Hewings, G. J. D. (1993) The Development and Use of Interregional Input-Output Models for Indonesia under Conditions of Limited Information. *Review of Economic Studies*, (5).

Miller, R. E., Blair, P. D. (1985) *Input-Output Analysis: Foundations and Extensions*. New Jersey, Prentice-Hall.

Sonis, M., Hewings, G. J. D., Guo, J. (1996) Sources of Structural Change in Input-Output Systems: a Field of Influence Approach. *Economics System Research* (8) 1.