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a b s t r a c t

A Thermodynamic air-standard cycle was envisaged for Ranque–Hilsh (R–H) or Vortex

Tubes to provide relevant Thermodynamic analysis and tools for setting operating limits

according to the conservation laws of mass and energy, as well as the constraint of the

Second Law of Thermodynamics. The study used an integral or control volume approach

and resulted in establishing working equations for evaluating the performance of an R–H

tube. The work proved that the coefficient of performance does not depend on the R–H tube

operating mode, i.e., the same value is obtained independently if the R–H tube operates

either as a heat pump or as a refrigeration device. It was also shown that the isentropic

coefficient of performance displays optima values of cold and hot mass fractions for

a given operating pressure ratio. Finally, the study was concluded by comparing the

present analysis with some experimental data available in the literature for operating

pressures ranging 2–11 atm.

ª 2010 Elsevier Ltd and IIR. All rights reserved.

Cycle à air traditionnel, aspects thermodynamiques et limites
du fonctionnement des tubes Ranque-Hilsch ou vortex
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1. Introduction

Thermal energy separation phenomenon in Ranque–Hilsh or

vortex tubes, or R–H tube for short, was first observed by

Ranque (1933) when he was carrying out some experiments

with a so called vortex pump. Later, shortly after World War II,

Hilsch (1946) brought the device to scientific discussion by

showing its cooling capability.

Ranque found that by injecting a compressed air stream

tangentially and perpendicularly to a simple hollow cylinder

open at both ends that two swirling flow streams developed

inside the tube moving toward to the tube ends. At regions

near the wall it was noticed a high velocity flow having an

average temperature superior to that one of the intake air

stream. Near the tube centerline, a jet flew out throughout the

tube at a lower temperature. Hilsch intensely explored the
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apparatus and proposed the first tentative theory to explain

the thermal energy separation. R–H tubes are also known as

‘‘vortex tubes’’ and the first term will be used through out this

paper because of its historical reasons. Some authors also

prefer to name the device as ‘‘Ranque–Hilsh Vortex Tube’’, or

simply RHVT.

Effort has been devoted to understand the fluid dynamics

and the energy separation physics for determining the

fundamental operation principle of this puzzling device.

Since Hilsh brought up the device to discussion, many

researchers have been working on the problem in order to

understand on how it operates and what the dominating

physical phenomena behind the tube are. There were quite

some interest and research activities on R–H tubes in the 50s

and 60s. One can mention the experimental and analytical

work carried out by Fulton (1950); Scheper (1951); Pengelley

(1957); Hartnett and Eckert (1957); Martynovskii and

Alekseev (1957); Lay (1959); Deissler and Perlmutter (1960);

Metenin (1961); Reynolds (1964), and Takahama (1965),

among others. More recent papers on the subject are Lewins

and Bejan (1999); Ahlborn and Gordon (2000); Saidi and

Valipour (2003); Behera et al. (2005); Aljuwayhel et al. (2005);

Gao et al. (2005); Dincer et al. (2008); Nimbalkar and Muller

(2009), among others. The literature is quite extensive and

it is not the goal of this paper to make a thorough review on

R–H tubes and the reader is directed to the recent paper of

Eiamsa-ard and Promvonge (2008) for a comprehensive

review.

Presently, R–H tubes have been widely used in applica-

tions such as cooling devices and heat pumps, simply by

their characteristic of separating the compressed inflow air

into cold and hot flows and directing them to the desired

application. Other less conventional applications are

particle and gas separation or gas cleaning besides many

other versatile applications as revised by Khodorkov et al.

(2003).

Constructively there are two types of R–H tubes: the

counter flow one, developed and studied by Ranque and

Hilsh, which still continues to be extensively investigated

nowadays; and the uni-flow R–H tube, in which the two

air flows exit in the same side of the tube end. According

to Eiamsa-ard and Promvonge (2008), much of the recent

experimental investigations of vortex tubes have been

divided into two main categories: (1) parametric studies,

which aims at varying geometrical parameters of the

vortex tube components and to observe their effects on

the tube performance; (2) studies focused on the mecha-

nism of energy separation and flow inside the R–H tube by

measuring pressure, velocity, and temperature profiles at

various stations between the inlet nozzle and the exits.

The effective parameters that control the temperature

separation can be separated further into two groups, the

geometrical and thermo-physical parameters. Most of the

experimental studies made on vortex tubes are related to

small internal diameter. Eiasma-ard and Promvonge

comment that most of the R–H tubes investigated in their

work have internal diameter less than 10 mm, generally

used for laboratory investigations and for cooling

finalities.

Internal processes that generate the two different air

streams are the central unanswered question. Although

numerous efforts, theories and hypotheses have been

formulated in order to elucidate the dominating physical

mechanisms within the tube, this paper will address the

question from a broader point-of-view using an integral or

control volume approach based on the application of the laws

of conservation of mass and energy as well as the Second Law

of Thermodynamics. Firstly, it will be proposed a Thermody-

namic air-standard cycle in a very similar fashion to any other

air-standard cycles such as the air refrigeration cycle, Otto,

Diesel, and Brayton, to name a few. As usual, the main

simplification of the ideal gas behavior with constant heat

capacities will lead the analysis to ideal working equations,

including a proper definition of a COP – coefficient of perfor-

mance – of the air-standard Ranque–Hilsh Thermodynamic

cycle. The study shows that the COP is the same indepen-

dently if a R–H tube works either as a heat pump or as

a refrigeration device. Secondly, the paper will analyze the

Nomenclature

COP coefficient of performance [-]

COPHP heat pump – coefficient of performance [-]

COPR refrigeration - coefficient of performance [-]

COPS isentropic or ideal – coefficient of performance [-]

CV constant heat capacity at constant volume

[kJkg�1K�1]

CP constant heat capacity at constant pressure

[kJkg�1K�1]

h specific enthalpy [kJkg�1]

k ratio between heat capacities [-]
_m mass flux [kgs�1]

P pressure [kPa]

Patm atmospheric pressure [kPa]
_Q cooling or heating load [kW]

R gas constant [kJkg�1K�1]

RP pressure ratio [-]

s specific entropy [kJkg�1 K�1]

T absolute temperature [K]
_W total compression power [kW]

Greek

D variation [-]

q dimensionless temperature [-]

m mass fraction [-]

Subscripts

atm atmosphere

0 air inlet flow

H air hot exit flow

L air cold exit flow

Superscripts

* optimal operating condition
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constraints imposed by the Second Law of Thermodynamics

that will result in establishing the limits of operation of any R–

H tube. Any R–H tube will operate between the isentropic or

ideal condition and the adiabatic throttling process for a given

inlet thermodynamic state. Finally, the study will show that

an ideal R–H tube has optimal operating conditions for which

the COP is optimum.

2. R–H tube as an air-standard
thermodynamic cycle

In an R–H tube operation compressed air is split into two

streams of air, being one colder and the other hotter than the

inlet compressed air. Depending on one’s interest the piece

of equipment can be used as a heat pump, or a refrigeration

device, or both. The modeling study initiates by establishing

the same fundamental assumptions as those that are made

for any air-standard cycle analysis. Basically, the working

fluid is air characterized by constant specific heats and its

behavior is described by the ideal equation-of-state. By doing

so, a simple way to obtain Thermodynamic relationships,

operation limits, and performance can be obtained by

applying the laws of conservation of mass and energy, as well

as the second law. While in actual operation air is released by

the two tube exits to atmosphere, for modeling purposes it is

necessary to assume that the working fluid undergoes

a closed Thermodynamic cycle. Such hypothesis is not

completely out of reality if one considers that the two exiting

air streams will discharge into an environment (such as the

atmosphere) to undergo next some cooling or heating with

the surroundings to reach the Thermodynamic equilibrium

with the environment once again. At the same time, air will

go through an ideal compression process to obtain the

compressed air that feeds the R–H tube. Ideally it will be

considered that the compression process is a reversible

isothermal one. The compression process is a point that can

bring some controversy as one may consider an isentropic

compression rather than a reversible isothermal one. In favor

of the latter one is that the air is usually fed into the tube at

the local temperature and if one considers the isentropic

compression, an additional heat exchanger after the

compressor would be necessary to remove heat from the air

as the final air temperature will be above the local one. Also,

ideally one may want to have a minimum shaft power

consumption for the air compression process, which can

only be achieved with a well cooled compressor in order to

approach as much as possible the reversible isothermal

compressor. Therefore, the ideal compression process is

used for establishing the air-standard process is the revers-

ible isothermal one.

Fig. 1 shows a schematic of the conceived air-standard

cycle. Constant pressure heating and cooling processes are

made by the two heat exchangers mounted downstream the

two tube exits and they represent the R–H tube cooling and

heating thermal loads capacity, respectively. The cold air

stream ð _mLÞ that leaves the R–H tube is labeled ‘‘L’’ and it will

receive the cooling load _QL for the case the R–H tube is in the

refrigeration operation mode. Ideally, after receiving the

cooling load in a heat exchange constant pressure process

the air stream will be heated up to the environment

temperature, T0. On the other hand, the hot air stream ð _mHÞ,
labeled ‘‘H’’, leaves the tube at the right tube end and it will

deliver the heating load _QH in a constant pressure heat

exchange process whenever the R–H tube operates in the

heat pump operation mode. Consequently, the hot air stream

will be cooled off to reach the environment temperature, T0.

In order to close the circuit the two air streams merge

together at T0 and Patm, to make up again the total mass flux,
_mo. Next, the total air stream at the environmental condi-

tions undergoes a compression process in the ideal

isothermal compressor to raise the pressure from the atmo-

spheric condition to the operational pressure, P0. Finally,

once again the compressed air at T0 and P0 at the tube inlet

will undergo the complex splitting phenomena within the R–

H tube to conclude the thermodynamic cycle (Fig. 1).

2.1. The laws of conservation of mass and energy

Using the schematics of Fig. 1, the mass conservation law in

steady state applied to the R–H tube can be written as:

_m0 ¼ _mL þ _mH; (1)

which, in terms of mass fractions becomes:

Fig. 1 – Schematics of the air-standard cycle for the R–H tube.
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mL þ mH ¼ 1: (2)

where, the cold mass fraction is defined as:

mL ¼
_mL

_m0
; (3)

whereas, the hot mass fraction is defined as:

mH ¼
_mH

_m0
; (4)

From the First Law of Thermodynamics in steady state

applied to the R–H tube it is possible to write:

_m0h0 ¼ _mLhL þ _mHhH (5)

All other forms of energy have been neglected, but the

specific enthalpy. From the hypothesis of ideal gas with

constant heat capacities along with the definitions given by

Eqs. (2) and (3), one may obtain the alternative form of the

equation of conservation of energy (Eq. (5)):

ð1� mLÞqH þ mLqL ¼ 1; (6)

where, qH ¼ TH/T0 and qL ¼ TL/T0, are the dimensionless hot

and cold temperatures, respectively. Alternatively, if one

wants to have an equation explicit on hot mass fraction, Eq. (6)

can be written as:

mHqH þ ð1� mHÞqL ¼ 1; (7)

The ideal isothermal compression leads to the following

expression for the total compression power:

_W ¼ _m0RT0ln

�
P0

Patm

�
(8)

Cooling, _QL, and heating, _QH, loads can be obtained by

applying the first law of Thermodynamics in steady state

separately to the two heat exchanges depicted in Fig. 1. Also,

with the ideal behavior hypothesis, one will obtain the

following two equations:

_QL ¼ _mLCPðT0 � TLÞ; (9)

and

_QH ¼ _mHCPðTH � T0Þ: (10)

For the refrigeration cycle operation mode as usual the COPR

is given by the ratio between the cooling load and the

compression power, i.e.,

COPR ¼
j _QLj

_W
: (11)

after substituting Eqs. (3), (8), and (9) along with the ideal gas

hypothesis with constant heat capacity at constant pressure,

CP, and constant volume, CV, one obtains the following

working equation:

COPR ¼ mL

k
k� 1

ð1� qLÞ
lnðRPÞ

; (12)

where, k is the ratio between heat capacities, i.e.,

k ¼ CP

CV
; (13)

and the pressure ratio, RP, is defined by:

RP ¼
P0

Patm
: (14)

In the heat pump operation mode, one may define the

following expression for the COPHP – coefficient of performance:

COPHP ¼
j _QHj

_W
(15)

In a similar fashion, after substituting Eqs. (4), (8), and (10)

into the above equation one obtains the following working

equation for the R–H tube in heat pump operation mode:

COPHP ¼ mH

k
k� 1

ðqH � 1Þ
lnðRPÞ

(16)

2.2. The second law of thermodynamics constraint

The Second Law of Thermodynamics limits the steady state

operation of an adiabatic Ranque–Hilsh tube by imposing the

following constraint over the tube:

_mLsL þ _mHsH � _m0s0 (17)

where the subscripts ‘‘0’’, ‘‘L’’, and ‘‘H’’ apply for the air inlet

flow and cold and hot exit flows, as before. After applying the

mass conservation equation (Eq. (1)) and the definition of the

cold mass flow ratio (Eq. (3)), one may obtain:

ð1� mLÞ
mL

DsL þ DsH � 0 (18)

where, DsL ¼ sL�s0 and DsH ¼ sH�s0. From the assumed

hypotheses, the specific entropy variation can be written as

function of pressure and temperature according to:

DsL ¼ CPln
�

qLR
k�1

k
P

�
(19)

and

DsH ¼ CPln
�

qHR
k�1

k
P

�
(20)

substituting Eqs. (6), (19), and (20) into Eq. (18), and after

rearranging it, one will obtain the following second law

constraint:

q
mL
L

�
1� mLqL

1� mL

�ð1�mLÞ

� R
1�k

k
P (21)

the above expression is more suitable for the refrigeration

operation mode as it possesses only magnitudes relevant to

refrigeration cycle. A second and absolutely equivalent form

of the above equation can also be obtained when the R–H is

operating as a heat pump where the related magnitudes are

explicitly obtained:

q
mH
H

�
1� mHqH

1� mH

�ð1�mHÞ

� R
1�k

k
P (22)

3. Analysis of limits of operation and
performance

3.1. Limits of operation

The isentropic condition sets the ideal limit of operation.

Given a known mass fraction and a pressure ratio, the

minimum allowable cold air stream temperature is given by

i n t e r n a t i o n a l j o u r n a l o f r e f r i g e r a t i o n 3 3 ( 2 0 1 0 ) 7 6 5 – 7 7 3768
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Eq. (21), whereas Eq. (22) sets the maximum hot air stream

temperature. Evidently, the other limit of operation occurs

when the R–H tube does not work at all (being an adiabatic

throttling device). In this case, the two air stream tempera-

tures will be at the same inlet temperature, and qL ¼ qH ¼ 1.

In order to analyze the ideal condition, firstly the inequality

sign that appears in Eqs. (21) and (22) must be replaced by the

equality sign. Two limits for the mass fractions matter in this

case. The first one is the case where the cold mass fraction

vanishes, i.e.,mL / 0, which is equivalent to mH / 1. Applying

that limiting condition to Eq. (21), one obtains:

lim
mL/0

q
mL
L

h
1�mLqL
1�mL

ið1�mLÞ

R
1�k

k
P

¼ 10qL ¼ 0; (23a)

now, applying the same condition to Eq. (22), one obtains:

lim
mH/1

q
mH
H

h
1�mHqH

1�mH

ið1�mHÞ

R
1�k

k
P

¼ 10qH ¼ 1; (23b)

The other limit occurs when the cold mass fraction

approaches the unity, i.e., mL/1, which is equivalent to mH/0

(hot mass fraction vanishes). So, carrying out those limits, one

obtains:

lim
mL/1

q
mL
L

h
1�mLqL
1�mL

ið1�mLÞ

R
1�k

k
P

¼ 10qL ¼ R
1�k

k
P ; (24a)

now, applying the same condition to Eq. (23b), one obtains:

lim
mH/0

q
mH
H

h
1�mHqH

1�mH

ið1�mHÞ

R
1�k

k
P

¼ 10qH/N; (24b)

It is noteworthy to mention that the dimensionless cold

temperature never can reach the zero value as given by the

limit in Eq. (23a). One must take into account that the cold

mass fraction is also going simultaneously to zero (mL / 0)

and as so, the hot mass fraction approaches the unit

(mH / 1) and the dimensionless hot temperature goes to

unity as well. In this case the R–H tube will work as an

adiabatic throttling device. Being the work fluid an ideal gas

with constant heat capacities, the temperature variation is

also nil, i.e., qH ¼ 1.

The second important observation regarding the above

limits is that Eq. (24a) represents the isentropic expansion of

the total air mass flow rate (mL / 1) as if it were ideally

expanding from P0 to Patm. Of course, the unbound upper limit

for the dimensionless hot temperature has only mathematical

significance as the hot mass fraction also vanishes (mH / 0). In

this case the R–H will work as an isentropic expansion device

and the temperature variation is the isentropic one associated

with the expansion, i.e., the limit indicated for qL given by Eq.

(24a).

Graphs in Figs. (2) and (3) show the dependence of the

dimensionless cold and hot temperature with the mass frac-

tion respectively. Concerning the graph in Fig. (2), the lower

isentropic limit given by Eq. (21) for qL as a function of the cold

mass fraction is shown and it is represented by the lower

curve. The upper limit horizontal straight line (qL) represents

the case the R–H tube does not operate at all, being a simple

adiabatic throttling device without any temperature variation.

Actual operating range of an R–H tube falls within those two

limits.

In Fig. (3), it is shown the behavior of qH as a function of

the hot mass fraction. The upper limiting curve corresponds

to the isentropic condition given by Eq. (22). As discussed

previously, the hot temperature tends to infinity as the hot

mass fraction goes to zero. The lower horizontal straight

line (qH ¼ 1) is valid for the case the R–H tube works as

a throttling device without any temperature change.

Evidently, any actual operating condition falls within those

two limits. It is important to recall that the both graphs of

Figs. (2) and (3) do represent the same phenomenon and,

therefore, are completely alike. It is a matter of one’s choice

to decide for which set of independent variables one is

willing to work with.

3.2. Analysis of performance

The performance analysis of an R–H tube is given by analyzing

the overall behavior of the COP as for any other refrigeration
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device. Firstly, it is necessary to show that Eqs. (12) and (16) are

equal. In order to prove that, first substitute qL from Eq. (6)

along with the fact that mL ¼ 1�mH, as defined by Eq. (2), into

Eq. (12). After rearranging it, the twin expression (Eq. (16)) will

emerge. Therefore, henceforth it is not necessary to make any

distinction between the coefficients of performance of an R–H

tube, and the subscripts ‘‘R’’ and ‘‘HP’’ can be dropped off.

Therefore:

COP ¼ COPR ¼ COPHP (25)

it is quite surprisingly that the COP of an R–H tube does not

depend on its operating mode: the COP will always be

the same. So, one can say simply say’’ COP of an R–H tube’’

without adding any adjective to it.

The second important feature of the R–H tube performance

is the behavior of the COP with the mass fraction. The analysis

is accomplished as before by establishing the limiting condi-

tions of the COP. The upper COP limit is set for the isentropic

behavior of the R–H tube and a subscript ‘‘s’’ will be used to

denote it. In order to obtain the isentropic COPS dependence

on the cold mass fraction, let one first isolate qL from Eq. (12)

and substitute it into Eq. (21) considering the equal sign to

obtain:

 
1þ COPS � lnðRPÞ

1�k
k

mL

!mL
 

1� COPS � lnðRPÞ
1�k

k

1� mL

!ð1�mLÞ

¼ R
1�k

k
P (26)

Notice that the ideal COPS is implicitly defined by the

previous equation. Eq. (26) is best seen in graph form as shown

in (Fig. 4), which has been denoted upper operating limit curve.

Keeping the COPs behavior in mind it is useful to determine the

minimum and maximum limits for the cold mass fraction. The

first limit of Eq. (26) is for the case where the cold mass fraction

vanishes, i.e., mL ¼ 0, which also leads to COPS ¼ 0. The other

limit of Eq. (26) is for the case where mL / 0, which gives the

following value:

lim
mL/1

COPS ¼
R

1�k
k

P � 1

ln
�

R
1�k

k
P

� (27)

For sake of simplicity, Eq. (26) was not rewritten down. The

above limit is shown in the right hand side of the upper curve

in Fig. (4).

With the isentropic operation investigated, one may now

analyze the situation for which the R–H tube works just as an

adiabatic throttling device. In this case the COP will be zero

everywhere no matter the cold (or the hot) mass fraction as

indicated in Fig. (4) by the lower operating limit straight line.

Furthermore, once established both the isentropic and the

adiabatic throttling operating situations, it is straightforward

to recognize that the actual COP for any R–H tube will fall

within the region bordered by the isentropic curve (upper one)

and the nil COP as shown in Fig. (4).

Fig. (4) also reveals a remarkable behavior of the COPs as

a function of the cold mass fraction. It displays an optimum or

maximum COPs for a given pressure ratio. As usual the

condition of a local maximum is given by:

vðCOPSÞ
vmL

�
RP

¼ 0; (28)

which, applied to Eq. (26) and after considerable work yields:

m�L ¼
q�Lln

 
R

1�k
k

P
q�L

!
þ q�L � 1

�
q�L
	2

ln

 
R

1�k
k

P
q�L

!
þ q�L � 1

; (30)

where, the (*) superscript was added to recall that the

optimal operating condition set by Eq. (30) is valid only for

the isentropic situation where the COPS is maximum for

a given pressure ratio. In order to find the numerical values

of the maximum condition conditions, m�L from Eq. (30)

should be substituted into Eq. (21) for a given pressure

ratio as well as a known heat capacities ratio. Of course,

there is an enormous effort to have a simple straight

expression. So, rather than doing that, Eq. (21) is rewritten

down below as Eq. (31). Then, it is suggested to simulta-

neously solve both non-linear equations Eqs. (30 and 31) by

any suitable numerical method.

�
q�L
	m�L

�
1� m�Lq�L
1� m�L

�ð1�m�LÞ
¼ R

1�k
k

P (31)

Two curves obtained by solving the two previous equations

are presented in Fig. (5). The first one is q�L � RP, whereas the

other curve is m�L � RP. Roughly, the ideal cold mass fraction

associated with the optimal COPs falls between 0.55 for very

low pressure ratios and 0.90 for a large pressure ratio (RP ¼ 20),

having an increasing monatomic behavior with the increasing

of the pressure ratio. On the other hand, the ideal optimal

dimensionless cold temperature is located between 0.3 and

0.9, and the function displays a decreasing monatomic

behavior with the increasing pressure ratio. One will not

overemphasize if one recalls that the ideal optimum param-

eters for the R–H tube in the heat pump operating mode is

promptly obtained by substituting the solutions m�L and q�L into

Eqs. (2) and (6) to obtain m�H and q�H. All the above calculations

were made for air, k ¼ 1.4, and it will vary somewhat for

different gases of a different heat capacities ratio.
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Fig. 4 – Coefficient of performance, COP, versus cold mass

fraction, mH. Pressure ratio, RP [ 5, air atmospheric

(k [ 1.4).
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The maximum or optimum COP�S associated with q�L and

m�Las a function of the pressure ratio can be obtained by

substituting those known values into the COP definition (Eq.

(12)). A graph showing the COP�S dependency with the pres-

sure ratio is shown in Fig. (6). As the pressure ratio

approaches the unity, the COP�S goes to infinity which, of

course, must be analyzed very carefully. At that limiting

condition the compression power also goes to zero and, as

the COP depends on reciprocal of the compression power, its

value will become unbound. It is interesting to notice that,

for air, the COP�S is greater than the unity for pressure ratios,

RP, within approximately the range just above 1 up to 3 and

it slowly decreases monotonically for higher values of

pressure ratios.

4. Comparison with some experimental data

Table 1 in Eiamsa-ard and Promvonge (2008)’s work presents

a compilation of published experimental data from several

researchers. Unfortunately, the dataset is not complete with

all necessary information to carry out a full analysis. Never-

theless, their table was used in order to compare the present

analysis with data obtained in laboratory for those available

data (cold and hot temperature difference along with the cold

mass fraction). The first 3 columns of Table 1 were directly

extracted from Table 1 of their work. The first column refers to

the data author and for any further reference details it is

suggested to refer to their paper. The second column refers to

the inlet pressure, P0, and the third column displays the cold

mass fraction, mL. Next two columns show the cold and hot

temperature differences. In order to carry out the study, it was

necessary to obtain the corresponding dimensionless

temperatures and a test temperature had to be assumed,

T0 ¼ 298.15 K (25�C), for switching from temperature differ-

ences to dimensionless temperatures. The corresponding

dimensionless temperatures are shown in 6th and 7th

columns.

After collecting experimental data, the first analysis one

should perform is to check if the First Law of Thermody-

namics is fulfilled. That can easily be accomplished by

checking experimental data against either Eq. (6) or Eq. (7),
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Fig. 5 – Optimal operating conditions where the COPS is

a maximum. Curve 1 is for the optimum dimensionless

cold temperature, q�L, versus pressure ratio, RP. Curve 2 is

for the optimum cold mass fraction, m�L, versus pressure

ratio, RP. Air atmospheric (k [ 1.4).
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Table 1 – Experimental data collected from literature by Eiamsa-ard and Promvonge (2008). Only complete data are
presented. The original data were reduced to variables according to the present work. It was assumed T0 [ 298.15 K (25 8C)
and P [ 1 atm.

Authora P0 (atm) mL DTL (K) DTH (K) qL qH 1st law check COP (actual) COPS (ideal)

Hilsh 11 0.23 53 140 0.822 1.470 1.32 0.060 0.329

Scheper 2 0.26 11.7 3.9 0.961 1.013 1.00 0.052 1.001

Scheller & Brown 6.1 0.506 23 15.6 0.923 1.052 0.99 0.076 0.783

Otten 8 0.43 50 40 0.832 1.134 1.00 0.121 0.631

Vennos 5.76 0.35 13 �1 0.956 0.997 0.98 0.031 0.618

Bruun 2 0.23 20 6 0.933 1.020 1.00 0.078 0.920

Stefhan et al. 6 0.3 38 78 0.873 1.262 1.14 0.075 0.537

Amitani et al. 3.06 0.4 19 15 0.936 1.050 1.00 0.080 0.947

Negm et al. 6 0.38 42 30 0.859 1.101 1.01 0.105 0.646

Ahlborn et al. 2.7 0.4 27 30 0.909 1.101 1.02 0.128 1.027

Promvonge and Eiamsa-ard 3.5 0.38 30 25 0.899 1.084 1.01 0.107 0.845

Aljuwayhel et al. 3 0.1 11 1.2 0.963 1.004 1.00 0.012 0.315

a For full reference, refer to Eiamsa-ard and Promvonge (2008).
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given that they are equivalent. So, in order to verify the

consistency of the experimental data base, the 8th column in

Table 1 was obtained by substituting the set of experimental

data (qL, qH, and mL) into Eq. (6). The fulfillment of First Law

would lead to a unity. Of course, one may consider any small

discrepancy due to the dependence of air the heat capacity

with temperature. 9th column in Table 1 shows the corre-

sponding experimental COP (actual) obtained from Eq. (12). It

was assumed an environment pressure equals to Patm ¼ 1 atm

(101.325 kPa), which may not be true for all of the collected

data. Finally, the last column represents the corresponding

COPS (ideal) isentropic limit calculated according to Eq. (26) for

each set of experimental data.

Fig. (7) shows a comparison of actual COP against the cor-

responding isentropic or ideal COPS for the experimental data

presented in Table 1 (last two columns). Ideally, experimental

data points should cluster around the bottom side of the 45�

straight line. However, there is a high data points concentra-

tion just about the low COP region, which is a clear indication

that that most actual R–H tubes are highly irreversible devices,

at least for those analyzed in this paper.

5. Discussions and conclusions

This paper analyzed the limiting operating conditions of an

ideal Ranque–Hilsh tube operating in steady state. The first

limit is set by the trivial solution in which the tube works as

a simple adiabatic throttling device. No temperature variation

between the inlet and outlet occurs and the COP is nil. The

other limit is established by the Second Law of Thermody-

namics as given by Eq. (21) or, alternatively, by Eq. (22). Any

actual R–H tube operation is bound by those two limits.

Initially, the paper carried out independent analyses for

a refrigeration operating mode and for a heat pump operating

mode. Through out the study it was shown that the results are

completely similar and they can alternate by simply selecting

the set of independent variables of interest, i.e., cold mass

fraction and cold temperature for refrigeration mode or hot

mass fraction and hot temperature for heat pump mode.

Therefore, it is not necessary to define a COP for each oper-

ating mode, as they are the identical and it can plainly be

named as the ‘‘COP of the R–H tube’’.

An analytical equation for the cold temperature as a func-

tion of the cold mass fraction could be obtained from the

hypothesis of ideal gas behavior with constant heat capac-

ities. Eq. (21) presents such equation in an implicit form.

Similarly, it is possible to obtain an equivalent equation for

the hot temperature as a function of the hot mass fraction (Eq.

(22)).

The graph of Fig. (2) indicates that very low temperatures

are allowable by solving the conservation equations in an R–H

tube if it could operate near the isentropic conditions. In fact,

R–H tubes have been used for obtaining liquefied natural gas

at cryogenic temperatures (Khodorkov et al., 2003; Kirillov,

2004). Conversely, high temperatures can also be obtained.

The analysis showed that there is an optimal or maximum

COP for an ideal R–H tube operating at isentropic conditions as

depicted in Fig. (4). In order to investigate that behavior

further, it was carried out an analysis of that optimum

condition. That was accomplished by applying the condition

of maximum (Eq. (28)) to the Eq. (26). The curve in Fig. (6)

shows the relationship between the maximum COP�S and the

pressure ratio for air (k ¼ 1.4). As shown in that curve, it is

possible to obtain a COPS greater than the unity for pressure

ratios up to 3 for air.

The cold mass fraction corresponding to the ideal

maximum COP�S for a large range of pressure ratios (from

nearly 1 up to 20) falls within 0.55–0.90. Nimbalkar and Muller

(2009) inform that measured optimum COP values for some

previous tested devices were located between 0.5 and 0.7.

Their work had an optimum COP for a mass cold fraction

around 0.6.

Mass fractions have been used in this study as indepen-

dent parameters (actually, only one of two mass fractions is

independent). It is worthy to mention that the mass fraction

(cold or hot one) is intimately and directly associated with the

internal construction of an R–H tube. They can be established

by selecting appropriate dimensions and shapes of area

passages within the tube.

Analyses carried out on the COP have shown that actual

R–H tubes are highly irreversible devices. The actual COP can

be as low as 5% of the isentropic COPS for the data analyzed in

this paper, which opens up room for further work on optimi-

zation and proper internal orifices and flow passages design.

Finally, this paper did not speculate on the physical

mechanisms that may occur inside an R–H tube, but rather the

study concentrated only on an integral control volume

approach using the laws of conservation. It is an open field for

discussion to investigate further what are the dominating

physical mechanisms that split the original fluid flow into hot

and cold fluid streams. As a personal view, the author spec-

ulates that compressible phenomena should be responsible

for the temperature separation within the tube. The Prandtl–

Meyer process may occur just at the compressed air expan-

sion at the inlet orifice exit section leading to a low tempera-

ture stream at the tube center line that would be driven to the

cold end exit. Given the compressible flow nature, it is also
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Fig. 7 – Comparison of actual COP and the corresponding

isentropic or ideal COPS for the experimental data

presented in Table 1. For the experimental data it was

assumed: air atmospheric (k [ 1.4), T0 [ 25 8C and

P [ 1 atm (101.325 kPa).
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possible that complex shock waves would be accountable for

raising the temperature to obtain the hot stream exit.

Acknowledgments

The author thanks CNPq for personal support. This work was

concluded while the author was a short term visiting

professor at Cethil-INSA de Lyon (France).

r e f e r e n c e s

Ahlborn, B.K., Gordon, J.M., 2000. The vortex tube as a classic
thermodynamic refrigeration cycle. J. Appl. Phys. 88 (6),
3645–3653.

Aljuwayhel, N.F., Nellis, G.F., Klein, S.A., 2005. Parametric and
internal study of vortex tube using a CFD model. Int. J.
Refrigeration 28, 442–450.

Behera, U., Paul, P.J., Kasthurirengan, S., Karunanithi, R., Ram, S.N.,
Dinesh, K., Jacob, S., 2005. CFD analysis and experimental
investigations towards optimizing the parameters of Ranque–
Hilsh vortex tube. Int. J. Heat Mass Transfer 48, 1961–1973.

Deissler, R.G., Perlmutter, M., 1960. Analysis of the flow and
energy separation in a vortex tube. Int. J. Heat Mass Trasfer 1,
73–191.

Dincer, K., Tasdemir, S., Baskaya, S., Uysal, B.Z., 2008. Modeling of
the effects of length to diameter ratio and nozzle number on
the performance of counterflow Ranque–Hilsch vortex tubes
using artificial neural networks. Appl. Therm. Eng. 28,
2380–2390.

Eiamsa-ard, S., Promvonge, P., 2008. Review of Ranque–Hilsh
effects in vortex tubes. Renew. Sust. Energy Rev. 12,
1822–1842.

Fulton, C.D., 1950. Ranque tube. J. ASRE Refrig. Eng., 473–479.

Gao, C.M., Bosschaart, K.J., Zeegers, J.C.H., de Waele, A.T.A.M.,
2005. Experimental study on a simple Ranque–Hilsch vortex
tube. Cryogenics 45, 173–183.

Hartnett, J.P., Eckert, E.R.G., 1957. Experimental study of the
velocity and temperature distribution in a high velocity vortex
tube flow. Trans. ASME 79, 751–758.

Hilsch, R., 1946. Die Expansion von Gasen im Zentrifugalfeld als
Kälteprozess. Zeitung für Naturforschung 1, 208–214.

Khodorkov, I.L., Poshernev, N.V., Zhidkov, M.A., 2003. The vortex
tube – a universal device for heating, cooling, cleaning, and
drying gases and separating gas mixtures. Chem. Pet. Eng. 39,
409–415.

Kirillov, N.G., 2004. Analysis of modern natural gas liquefaction
technologies. Chem. Pet. Eng. 40, 310–315.

Lay, J.E., 1959. An experimental and analytical study of vortex
flow and temperature separation by superposing of spira and
axial flow, part 1 an part 2. ASME J. Heat Transf 81, 316–317.

Lewins, J., Bejan, A., 1999. Vortex tube optimization theory.
Energy 24, 931–943.

Martynovskii, V.S., Alekseev, V.P., 1957. Investigation of the
vortex thermal separation effect for gases and vapors. Sov.
Phys. Tech. Phys., 2233–2243.

Metenin, V.I., 1961. Investigations of vortex tube type compressed
air separators. Sov. Phys. Tech. Phys. 15, 1025–1032.

Nimbalkar, S.U., Muller, M.R., 2009. An experimental
investigation of the optimum geometry for the cold end orifice
of a vortex tube. Appl. Therm. Eng. 29, 509–514.

Pengelley, C.D., 1957. Flow in a viscous vortex. J. Appl. Phys. 28,
86–92.
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